Расширяются сведения о географии и экологии растений и животных. Наблюдается переход от наблюдений к экологическому мышлению, чему способствовали исследования А. Гумбольдта (1769–1859) по зональному и вертикальному распространению растений. Выделив более 17 типов растительных формаций, он продемонстрировал роль климата в определении физиономического типа растений. Швейцарский ботаник И. Турман (1848) предложил различать понятия «флора» и «растительность» и выделить их как самостоятельные направления исследования, что способствовало выделению геоботаники как науки.
В развитии экологического направления велика роль К.Ф. Рулье (1814–1858). Он обратил внимание на изучение связи животных с окружающей средой. Учитывалась роль климатических факторов и взаимодействие организмов между собой. В додарвиновской биологии К.Ф. Рулье увязывал эволюционный процесс с геологическими событиями на поверхности Земли. Он считал, что эволюция идет не только по пути повышения организации, но в большей мере формирования многообразия.
На рубеже XVIII–XIX вв. благодаря трудам Ж. Кювье выделяется палеонтология как самостоятельная наука о вымерших животных. Особенно широкое развитие палеонтология получила после выработки подхода к оценке стратиграфической летописи, что привело к классификации хронологии слоев по остаткам окаменелостей беспозвоночных. Упорядочилась оценка хронологической последовательности ископаемых растений и позвоночных. Несмотря на бесспорные факты о постепенной смене форм жизни в истории Земли, вывод об эволюции еще не получил распространение в биологии.
Исследование онтогенеза и эмбрионального развития животных и растений
Развитие животных и растений в течение индивидуальной жизни (онтогенез) привлекало внимание с древнейших времен при обсуждении вопросов, касающихся наследственности, старения, смерти, влияния внешних условий и т.д. Но многие вопросы эмбрионального развития еще долгое время оставались тайной. Х.И. Пандер изучал «превращения насиженного яйца в течение первых пяти дней» (1817). К.М. Бэр (1792–1876) собрал большой сравнительный материал по этому же вопросу («История развития животных. Наблюдения и размышления»). Он детально описал этапы эмбриогенеза цыпленка, обобщил их в плане познания закономерностей развития и строения животных. Для животных К. Бэр выделяет четыре типа эмбрионального развития: периферический и лучистый, удлиненный, массивный, и позвоночные.
На основе сравнения развития зародышей разных животных К. Бэр сформулировал четыре закона: в каждой большой группе общее образуется раньше специального, специальное постепенно формируется из общего, эмбрионы одной животной формы не проходят через взрослые этапы других форм, а сходство форм проявляется только в самих эмбрионах.
Заметные успехи достигнуты в изучении развития генеративных органов, оплодотворения и строения зародыша у растений, что имело значение для зарождения эмбриологии растений как самостоятельной науки. Доказано существование пола у растений, решен вопрос о формировании зародыша семени. Исследования полового процесса и оплодотворения у животных и растений привели к выделению эмбриологии как самостоятельной науки и формированию в ней сравнительного направления, а также развитию новых методов оценки филогенетических связей между разными классами в пределах растений и животных на основе сходства и различия по начальным этапам онтогенеза. Полученные данные были использованы в дальнейшем при обосновании теории эволюции и принципов филогенетической систематики. Познание процесса оплодотворения оказало большое влияние на развитие представлений об аппарате наследственности. Возникновение эмбриологии имело значение для развития эволюционного учения.
Успехи в области физиологии животных и растений
В познании особенностей онтогенеза и единства организации живой природы важную роль сыграли и достижения в области физиологии животных и растений в первой половине XIX в., связанные с изучением физико-химических процессов.
Французский ученый Франсуа Мажанди (1785–1855), опираясь на достижения физики и химии, пытался объяснить явления жизни, исследовать их в процессе становления в онтогенезе, используя экспериментальные подходы. Он анализировал отдельные этапы кровообращения и пищеварения.
Мари Флуранс (1794–1867) изучал значение различных нервов и участков головного мозга. Существенны достижения И. Мюллера (1801–1858) в изучении нервов, органов чувств, нервных волокон и симпатических нервов, их роли в распространении раздражений к мускулам. Нервы в его понимании – проводники сигналов от внешних воздействий. Он пишет, что «ощущение, боль, наслаждение – все это состояния нервов, а не свойства вещей, которые вызывают их в наших нервах».
Физиолог К. Бернар (1813–1878) объяснял физико-химическими процессами функции поджелудочной железы, печени, гликогена и поддержания гомеостаза организма. В сходстве переработки крахмала он усматривал единство жизнедеятельности животных и растений.
В первой половине XIX в. также достигнуты успехи в изучении питания растений. Н. Соссюр (1767–1848) накопил большой экспериментальный количественный материал в пользу участия углекислого газа в синтезе органических веществ и выделения при этом кислорода в равных объемах к поглощенному углекислому газу. Доказано участие в этом процессе солнечной энергии, воды, минеральных веществ.
Успехи изучения микроорганизмов. Теория клеточного строения и развития живых существ
С конца XVIII в. микроскопическими исследованиями было доказано существование многочисленных организмов, невидимых простым глазом. Число описанных микроорганизмов возросло и их пришлось выделить в особую группу Protozoa.
О роли микроорганизмов в инфекционных заболеваниях предполагали давно, впоследствии было определено участие отдельных из них в процессах брожения.
С обнаружением роли микроорганизмов в природе и возможности их использования в промышленных целях изучение простейших достигает большого размаха. Происходит описание новых видов, накопление сравнительных данных по морфологии, строению и образу жизни простейших. Интерес к исследованию микроорганизмов способствовал выделению бактериологии как науки.
Усовершенствование конструкции микроскопа позволило описать оболочки клеток и ядра; ядро отнесено к обязательным элементам всякой клетки.
К 40-м годам XIX в. завершилась формулировка клеточной теории строения организмов благодаря исследованиям Шлейдена (1804–1881) и Т. Шванна (1810–1882). С утверждением клеточной теории выделяются гистология и цитология как самостоятельные науки.
Учение Ж.Б. Ламарка. Другие представления об эволюции органического мира в первой половине XIX в.
Жан Батист Ламарк (1744–1829) – французский академик, выдающийся представитель биологии конца XIII и первой половины XIX в., автор мемуаров по метеорологии, флоры Франции и ботанического словаря.
В 1802 г. в книге «Гидрология» Ж.Б. Ламарк отмечает, что поверхность Земли менялась постепенно на протяжении веков под влиянием ныне действующих сил природы. В семитомной «Естественной истории беспозвоночных животных» упорядочил характеристику и классификацию беспозвоночных, выделил эту группу в самостоятельный раздел зоологии.
В своих трудах Ж.Б. Ламарк обращался к проблеме эволюции и изменяемости видов, акцентируя внимание на действие условий существования. «Природа, действующая во всем постепенно, не могла произвести всех животных за раз: она сформировала сперва самых простых, а затем постепенно – сложных» (Ламарк). Никто до него идеи о происхождении одних видов из других, а также о прогрессе растений и животных, не смог так четко выразить. Ступени лестницы органических существ, по его мнению, «уловимы исключительно в главных группах общего ряда, а не в видах, ни даже родах». Ж.Б. Ламарк пытается построить естественную классификацию организмов с учетом морфологических, физиологических и психических их особенностей, где получил бы отражение порядок, в котором природа производила животных, как последовательный ряд градаций. На основе построения этой системы Ламарк пришел к признанию наличия эволюции органических форм и сделал попытку объяснить ее факторы. В их числе он указывает время и среду, т.е. необходимо время и изменение среды как первопричины эволюций.
На растения и низшие животные среда действует непосредственно, их изменения всегда соответствуют направлению изменения среды, т.е. происходит прямое приспособление. На высшие животные, среда действует опосредованно через перестройку потребностей. Полученные при непосредственном и косвенном влиянии среды изменения передаются в ряду поколений по наследству. Эти положения он сформулировал в виде законов: упражнение (развитие) и неупражнение (редукция) органов (1-й закон). Все, что природа заставила индивидов приобрести или потерять «все это сохраняется путем размножения у новых особей…, если приобретенные изменения присущи обоим родителям или тем, от которых новые особи произошли» (2-й закон). Однако Ж.Б. Ламарк не мог объяснить упражнением или неупражнением появление совершенно новых органов или сохранение маловажных органов. Появление нового органа связывал с накоплением флюидов на определенных участках (например, накопление флюидов ярости на костях головы способствует формированию рогов), что было на уровне фантазии.
Ж.Б. Ламарк пытался объяснить и естественное положение человека от четвероруких обезьян длительным использованием передних и задних конечностей в разных целях. Использование задних конечностей для ходьбы якобы превратило обезьян в двуногие существа.
Своеобразным было объяснение Ламарком причин усложнения организации в живой природе «внутренним их стремлением» к повышению своей организации на основе «силы воли».
При всех недостатках рассуждений Ж.Б. Ламарка его заслугой остается первое обоснование наиболее стройного и научного учения эволюции органического мира, пронизанное принципами историзма и развития. Учение Ж.Б. Ламарка не раскрыло эволюционного процесса, оно держалось на слабой фактической основе и страдало отсутствием строгих фактов.