Законы сохранения – законы, согласно которым численные значения некоторых физических величин не изменяются с течением времени в любых процессах или в определенном классе процессов. Важнейшие законы сохранения, справедливые для любых изолированных систем, — законы сохранения энергии, импульса, момента количества движения, электрического заряда. Кроме этих строгих законов сохранения, существуют приближённые законы сохранения, которые справедливы лишь для определенного круга процессов; например, сохранение чётности нарушается лишь в процессах, обусловленных слабым взаимодействием.
Так как частица, например электрон, представляет собой объект, который хорошо локализован в пространстве, то с ним не может быть связана бесконечная плоская волна, волна должна быть также хорошо локализована в пространстве. Де Бройль предположил, что это группа волн, имеющих весьма близкие частоты, то, что сейчас называется волновым пакетом. Центр волнового пакета перемещается с групповой скоростью, совпадающей со скоростью частицы (что видно из формулы Рэлея для групповой скорости волны в среде с дисперсией).
Де Бройль перенес на частицы с массой покоя уже известную к тому времени модель корпускулярно-волновой природы фотона, частицы, не имеющей массы покоя, что дало исходное соотношение для длины волны де Бройля. Однако ход его мысли при этом был противоположен ходу мысли Эйнштейна. Если Эйнштейн стартовал с волновых свойств света и предположил наличие его корпускулярных свойств (квантов света), то де Бройль стартовал с корпускулярных свойств частицы и предположил наличие у нее также и волновых свойств.
Исходя из его гипотезы, можно сказать: во-первых, корпускулярно-волновой дуализм был перенесен и на частицы с массой покоя. Во-вторых, использование групповой скорости волны в рамках принципа Ферма привело его в соответствие с принципом Мопертюи для частицы с массой покоя, двигающейся со скоростью т). Наконец, в-третьих, появилось и объяснение целым числам в теории атома Бора: стационарные орбиты (состояния электрона в атоме) — это те, на длине которых точно укладывается целое число п длин волн де Бройля для электрона, движущегося по данной орбите.
Однако де Бройль понимал наиболее важное следствие из своей гипотезы. Он уже в 1923 году писал: «Любое движущееся тело в определенных случаях может дифрагировать. Поток электронов, проходящий через достаточно малое отверстие, должен обнаруживать явление дифракции»[3]. В диссертации, написанной в 1924 году, он уже использовал свою гипотезу для качественного и количественного описания различных оптических явлений.
Современная эволюционная теория подразделяет сложный эволюционный процесс на два этапа: макро- и микроэволюцию. Знание элементарных представлениий, лежащих в основе эволюции, позволяет повысить точность анализа сложных процессов макроэволюции. Между макро- и микроэволюцией принципиальной разницы не существует[4].
Микроэволюция - эволюционные преобразования, происходящие в пределах популяций в сравнительно короткие промежутки времени (например, изменение частоты генов, гомо- и гетерозигот в популяции за несколько поколений). Иными словами, микроэволюция — это совокупность элементарных эволюционных явлений, направленно текущих в популяциях под влиянием различных эволюционных факторов.
Элементарное эволюционное явление - стойкое изменение генотипического состава популяции, т. е. совокупность необратимых генетических изменений, которые меняют эволюционные возможности популяции.
Такие генетические изменения могут возникнуть в результате действия различных эволюционных факторов и, в конце концов, сведутся либо к возникновению и распространению новых (ранее не существовавших в популяции) наследственных особенностей, либо к возникновению таких сочетаний генов, которые в сумме дадут совершенно новый результат в виде возникновения нового признака.
Микроэволюция, таким образом, - это процесс эволюционного преобразования популяций, приводящий к образованию внутривидовых форм и новых видов как конечного ее результата.
Макроэволюция — это процесс эволюционного преобразования и развития различных групп живых организмов на протяжении десятков и сотен миллионов лет. Иными словами, микроэволюция — это эволюционные преобразования живой природы на уровне выше видового (образование высших таксонов, новых органов и систем, вымирание отдельных групп и т. д.). В общем смысле макроэволюцией можно назвать развитие жизни на Земле в целом, включая и ее происхождение. Макроэволюционным событием считается также возникновение человека, по многим признакам отличающегося от других биологических видов. Между микро- и макроэволюцией нельзя провести резкую грань, потому что процесс микроэволюции, первично вызывающий изменение популяций (вплоть до видообразования), продолжается без какого-либо перерыва и на макроэволюционном уровне внутри вновь возникших форм.
Отсутствие принципиальных различий в протекании микро- и макроэволюционного процесса позволяет рассматривать их как две стороны единого эволюционного процесса, и применять для анализа процесса всей эволюции понятия, разработанные в теории микроэволюции, поскольку макроэволюционные явления (возникновение новых семейств, отрядов и других групп) охватывают десятки миллионов лет и исключают возможность их непосредственного экспериментального исследования.
Таким образом, можно представить следующие доказательства эволюционной теории.
Эмбрионологическое доказательство эволюции. Все многоклеточые животные проходят в ходе индивидуального развития стадии бластулы и гаструлы. С особой отчетливостью выступает сходство эмбриональных стадий в пределах отдельных видов и классов. Например, у всех наземных позвоночных, так же как и у рыб, обнаруживается закладка жаберных дуг, хотя эти образования не имеют функционального значения у взрослых организмов. Подобное сходство эмбриональных стадий обьясняется единством происхождения всех живых организмов.
Морфологическое доказательство эволюции. Существование форм, в которых сочетаются признаки нескольких характерных систематических единиц указывает на то, что в прежние геологические эпохи жили организмы, которые являются родоначальниками нескольких систематических групп. Связь между разными классами животных так же хорошо иллюстрирует общность их происхождения.
Палеантологические признаки. Палеантологические данные указывают на смену животных и растений во времени. Палеантология так же указывает на причины эволюционных преобразований. Богатейший палеантологический материал - одно из наиболее убедительных доказательств эволюционного процесса.
Биогеографические доказательства эволюции. Ярким свидетельством произошедших и происходящих эволюционных изменений является распространение различных животных и растений по всей территории планеты.
Сравнение животного и растительного мира разделения зон дает богатейший материал для доказательства эволюционного процесса. Распределение видов животных и растений по поверхности планеты и их группировка в биогеографические зоны отражает процесс исторического развития Земли и эволюции всего живого[5].
Островные флора и фауна. Для понимания эволюционного процесса интерес представляют фауна и флора островов. Их состав полностью зависит от происхождения этих островов. Острова могут быть материкового происхождения или океанического. Материковые острова характеризуются флорой и фауной, близкой по составу к материковой. Чем древнее остров и чем более значительная водная преграда, тем больше обнаруживается отличий. При рассмотрении океанических островов, можно обнаружить, что их видовой состав очень беден. Отсутствуют наземные млекопитающие и амфибии. Вся фауна океанических островов - результат случайного заселения. Огромное количество разнообразных факторов указывает на то, что особенности распределения живых существ на планете тесно связаны с преобразованием земной коры и с эволюционным изменением видов.
Ген – это участок молекулы ДНК (у многих вирусов РНК), кодирующий первичную структуру полипептида, молекулы транспортной или рибосомной РНК. Геном – совокупность генов, содержащихся в гаплоидном наборе хромосом клетки. В геноме каждый ген представлен одним геном из аллели. Геном представляет собой совокупность наследственных признаков, локализованных в ядре клетки.
Кодон (триплет), единица генетического кода; состоит из 3 последовательно расположенных нуклеотидов в молекуле ДНК или РНК. Последовательность кодонов в гене определяет последовательность распределения аминокислот в полипептидной цепи белка, кодируемого этим геном.
Нуклеотиды (нуклеозидфосфаты), фосфорные эфиры нуклеозидов; состоят из азотистого основания (пуринового или пиримидинового), углевода (рибозы или дезоксирибозы) и одного или нескольких остатков фосфорной кислоты. Соединения из одного, двух, трёх, нескольких или многих остатков нуклеотидов называются соответственно моно-, ди-, три-, олиго- или полинуклеотидами. Нуклеотиды — составная часть нуклеиновых кислот, коферментов и других биологически активных соединений.