Реферат
по биологии
"Пептидные антибиотики животных как биохимические факторы противоинфекционной защиты"
2008
Пептиды, осуществляющие защиту животных от инфекции, широко представлены в природе от простейших до человека. Наиболее распространенным в эволюции типом антимикробных молекул являются катионные цистинсодержащие полипептиды. Наименьшим по размерам молекулы представителем этой группы антибиотических соединений является додекапептид с 1 дисульфидной связью, выделенный из нейтрофилов коров. Открытые нами протегрины содержат уже 2 дисульфидных мостика, так же как и подобные им соединения из гемоцитов подковообразного краба - тахиплезины и гемолимфы скорпиона - андроктонин. Дефенсины человека, кролика, крысы, мыши и морской свинки, как и р-дефенсины коров и галлинацины кур, содержат в своем составе 6 цистеиновых остатков, образующих 3 внутримолекулярные S-S-связи. Замыкают рассматриваемый ряд антимикробные полипептиды eNAP-1 и eNAP-2 из нейтрофилов лошади, для структуры которых характерно наличие уже 4 дисульфидных групп. Есть основания предполагать, что дисульфидные связи придают молекулам полипептидов повышенную устойчивость к переваривающему действию многочисленных протеиназ лейкоцитарного и микробного происхождения, обеспечивая их пролонгированное функционирование в качестве антибиотических агентов при фагоцитозе и воспалении.
Следует подчеркнуть, что фагоциты и гемоциты являются не единственными клетками организма, содержащими дефенсины и структурно-родственные им полипептиды. Выявлены дефенсины в клетках эпителия тонкой кишки мышей, кролика и человека, в эпителии трахеи и языка коров, в структурах мочеполового и репродуктивного трактов человека.
Присутствие дефенсинов в клетках слизистой тонкого кишечника интересно в связи с представлениями И.И. Мечникова о морфофизиологическкх предпосылках формирования фагоцитарной функции клеток в эволюции. Он рассматривал фагоцитоз как антимикробную функцию специализированных клеток организма, возникшую и развившуюся на основе пищеварительной активности цитоплазмы. Антимикробная функция фагоцитов эволюционно возникла на основе способности простейших поглощать и инактивировать бактерии, которые являются основным объектом их питания. Поэтому уже на заре развития животных перед ними стояла задача инактивации потенциально патогенных микроорганизмов, являющихся для них источником пластических веществ и энергии. Есть основания допускать, что продукция простейшим Entamoebahistolytica пептидов, структурно гомологичных NK-лизинам лимфоцитов, отражает генеральную линию развития механизмов противоинфекционной резистентности у животных. В последние годы дефенсины описаны и у высших растений, причем, несмотря на наличие у них 4 дисульфидных связей, они имеют вторично-третичную структуру, сходную с таковой дефенсинов насекомых. Данные о единстве ряда молекулярных механизмов защиты от инфекции у животных и растений могут служить свидетельством общности их происхождения в эволюции.
Локализация дефенсинов в фагоцитах и клеточно-тканевых структурах организма, "пограничных к инфекции", свидетельствует в пользу их участия в формировании неспецифической антимикробной резистентности в качестве универсальных антибиотиков эндогенного происхождения. Более того, рассматриваемый молекулярный механизм защиты от микробов является, по-видимому, одним из древнейших в эволюции животных, поскольку полипептиды дефенсиновой природы встречаются уже в гемолимфе имаго медоносной пчелы, личинок мясной мухи, жука Zophobasatratus и стрекозы.
Другой распространенной в эволюции матрицей антибиотических пептидов являются цекропины, выявленные первоначально в гемолимфе ряда насекомых, а позже в слизистой тонкого кишечника свиньи. Гены структурно-родственных им пептидов были клонированы и секвеированы из асцидии Styelaclava в лаборатории проф. Лерера. Эта гомологическая группа пептидов представляет собой линейные, не содержащие цистеина молекулы оснбвной природы.
При всем структурном разнообразии большинства описанных в настоящее время антибиотических пептидов все они являются, как правило, одновременно основными и амфипатическими молекулами, проявляющими сродство как к липофобным, так и липофильным средам и соединениям. Положительный заряд и амфифильность молекул антибиотических пептидов лежат в основе их функциональных проявлений,' в частности антимикробного действия. Благодаря им антибиотические пептиды вступают в электростатическое и гидрофобное взаимодействия с анионными фосфолипидами и липополисахаридами мембран микробных клеток-мишеней, которые приводят сначала к их адсорбции на поверхности мембран, а потом к внедрению в двойной липидный слой, что нарушает организацию и целостность оболо-чечных структур микроорганизмов. Подобное воздействие АП на ци-топлазматическую мембрану имеет следствием необратимые повреждения ее структуры и нарушения ее разнообразных функций, результирующим эффектом которых является гибель клеток-мишеней. Частным случаем цитотоксичности АП является их действие на микроорганизмы. В силу мембранотропного механизма антибиотического действия этих пептидов они способны в определенных условиях проявлять повреждающие эффекты в отношении клеток животного организма, который их продуцирует. В связи с этим встает вопрос о том, какие клеточно-молекулярные механизмы обеспечивают прицельность именно антимикробного действия АП, сводя к минимуму их возможные аутоповреждающие эффекты в процессах фагоцитоза и воспаления, а также на поверхности барьерных эпителиев макроорганизма. Как теперь установлено, подобная избирательность действия АП определяется рядом структурных и морфологических факторов. К последним относится, в частности, компартментализация дефенсинов в лизосомоподобных гранулах лейкоцитов и клеток Панета, где они связаны с кислыми мукополисахаридами, которые обеспечивают нейтрализацию цитотоксических молекул. Другие пептиды упакованы в гранулах в форме функционально неактивных предшественников, которые подвергаются ограниченному протеолизу с освобождением антимикробного пептида только в случае активации нейтрофильных гранулоцитов в процессе фагоцитоза. В случае освобождения содержимого лизосомоподобных гранул нейтрофильных гранулоцитов во внеклеточное пространство цитотоксичность дефенсинов нейтрализуется вследствие их взаимодействия с плазменными белками, являющимися в своей основной массе анионными соединениями. В настоящее время установлено, что хорошо известные ингибиторы сериновых протеиназ - а2-макроглобулин, а 1-ингибитор протеиназ, а 1 - антихимотрипсин, антитромбин Ш - обладают повышенным сродством к дефенси-нам, благодаря чему образуются нецитотоксичные комплексы серпины-дефенсины.
Существенно важным фактором, определяющим избирательность действия АП на микроорганизмы, являются особенности поверхностных структур бактерий, низших грибов, оболочечных вирусов и, в меньшей степени, простейших. В клеточной стенке и цитоплазматической мембране бактерий и грибов локализованы молекулы, к которым АП проявляют повышенное сродство в ходе межмолекулярных электростатических и гидрофобных взаимодействий. Так, в частности, в состав липидов цитоплазматической мембраны большинства бактерий входят кислые фосфолипиды в существенно более высокой концентрации, чем в плазмалемму эукариотических клеток. Вследствие повышенного электростатического взаимодействия АП с мембранными структурами, обогащенными кислыми фосфолипидами, наблюдается их преимущественная сорбция на бактериальных клетках как в фаголизосомах фагоцитов, так и во внеклеточной среде в очагах воспаления и на поверхности слизистых и кожных покровов. Благодаря ионному взаимодействию АП концентрируются в областях цитоплазматических мембран бактерий, обогащенных кислыми фосфолипидами. Подобное свойство АП было неоднократно продемонстрировано в модельных условиях с использованием искусственных плоских мембран и липосом. Повреждающее действие АП на мембраны-мишени также зависит и от интенсивности гидрофобных взаимодействий пептида с углеводородными хвостами жирных кислот липидов. Амфипатический характер строения молекул большинства АП обеспечивает их внедрение в двойной липидный слой мембран и нарушение структурной целостности последних. Известно также, что присутствие холестерина в составе липидов мембран эукариотических клеток повышает резистентность последних к повреждающему действию таких пептидов, как магейнин и цекропин.
При анализе рассматриваемых взаимодействий важно также учитывать то обстоятельство, что цитоплазматическая мембрана бактерий непосредственно недоступна для контакта с АП, поскольку покрыта клеточной стенкой, в состав которой у грамположительных бактерий входит пептидогликан, а грамотрицательных - пептидогликан и наружная мембрана, являющаяся дополнительным защитным барьером микробной клетки. Поэтому дефенсины, за исключением некоторых криптдинов, и мягейнины более эффективно поражают invitro грамположительную микрофлору, нежели грамотрицательную. Однако это правило распространяется не на все группы антибиотических пептидов. Например, цекропины и некоторые бактенецины более активны как цитотоксические молекулы в отношении грамотрицательных бактерий. Это свойство указанных соединений обусловлено их повышенной способностью к взаимодействию с одним из типичных представителей структуры наружной мембраны грамотрицательных бактерий, каковым является липополисахарид. Наличие липополисахарида во внешнем слое наружной мембраны грамотрицательных бактерий является одним из условий их опознания антибиотическими пептидами и белками.
Пенетрирующая липофильный бислой активность молекул антибиотических пептидов в ряде случаев заметно зависит от трансмембранного электрического потенциала клеток-мишеней, который, как известно, у плазмалеммы бактерий обычно в 1.5-2 раза более высокий, чем у мембран эукариотических клеток. Это свойство мембран является одним из условий, облегчающих проникновение АП через липидный бислой, особенно в тех случаях, когда эффекторные молекулы умеренно - или слабоосновные. Проникающая способность высокоосновных пептидов, таких как дефенсины кролика NP-1 и NP-2, практически не зависит от мембранного потенциала клеток-мишеней. Направление электрического поля поперек мембран от плюса на внешней поверхности мембраны к минусу - на внутренней обеспечивает электрофорез положительно заряженных молекул антибиотических пептидов через мембрану внутрь клетки. При этом часть молекул самостоятельно или в ассоциации друг с другом внедряется в мембраны, образуя в них пороподобные отверстия различной молекулярной организации. Перфорация мембран, которая в ряде случаев носит транзиторный характер, приводит к утечке из клеток ионов и нарушению ионной асимметрии между средой и клетками. Следствием этого является диссипация мембранного потенциала клеток-мишеней и стремление молекул воды войти в клетки. Результатами подобного движения воды могут быть разбухание клеток-мишеней и их осмотический лизис. Рассеивание мембранного потенциала лишает клетки возможности осуществлять активный транспорт ионов и веществ против градиента концентраций, что в итоге резко снижает их жизнеспособность.