Смекни!
smekni.com

Обмен веществ и энергии. Терморегуляция (стр. 2 из 4)

Глицерин окисляется до диоксида углерода и воды с образованием АТФ. Окисление жирных кислот путем бета-окисления сопровождается освобождением энергии и образованием АТФ. Промежуточными продуктами окисления являются кетоновые тела: бета-оксимасляная кислота, ацетон и ацетоуксусная кислота. Конечные продукты окисления жирных кислот – диоксид углерода и вода. Основное место окисления жирных кислот – печень.

В организме осуществляется и синтез жира, жирных кислот, глицерина из белков и углеводов при избыточном их поступлении. Синтезируется глицерин из глюкозы, жирные кислоты – из ацетоуксусной кислоты.

В крови животных поддерживается концентрация общих липидов на уровне 3,0…4,0 г/л, общих фосфолипидов – 1,53…3,63 г./л, холестерина – 140 мг %.

Конечные продукты превращения жиров выводятся из организма через почки с мочой, через кожу с потом, через легкие с выдыхаемым воздухом.

Обмен углеводов

Углеводы в организме используются в основном как источник энергии. Обмен углеводов – это совокупность процессов их превращения в организме. Он осуществляется в три фазы:

1) гидролитическое расщепление углеводов в пищеварительном аппарате и всасывание продуктов гидролиза в кровь;

2) превращение и использование всосавшихся из пищеварительного аппарата продуктов гидролиза углеводов в организме, сопровождающееся включением углеводов в структуры организма и освобождением энергии;

3) выделение конечных продуктов обмена углеводов из организма.

Превращение углеводов под действием ферментов начинается в ротовой полости, продолжается в желудке и происходит в основном в кишечнике. Углеводы всасываются главным образом в виде глюкозы в тонком кишечнике и поступают в кровь.

С кровью глюкоза поступает в печень, где частично задерживается, частично проходит с кровью дальше и достигает тканей всех органов.

: Всосавшаяся глюкоза в основном используется как энергетический материал, так как возможности отложения ее в организме весьма ограничены. В печени, в мышцах и других органах глюкоза депонируется в виде гликогена. Часть глюкозы в печени превращается в жир и откладывается в жировых депо.

Во всех тканях, пройдя стадию депонирования, глюкоза используется как источник энергии, т.е. окисляется. Окисление глюкозы происходит как в аэробных, так и анаэробных условиях.

Вначале глюкоза активируется, превращается в пировиноградную кислоту. Ваэробных условиях пировиноградная кислота окисляется в цикле Кребса до диоксида углерода и воды с образованием АТФ. При полном окислении молекулы глюкозы образуется 38 молекул АТФ. В анаэробных условиях пировиноградная кислота превращается в молочную кислоту с образованием энергии. Таким образом из молекулы глюкозы при отсутствии кислорода образуется 2 молекулы АТФ. Затем в печени из молочной кислоты синтезируются глюкоза и гликоген. Если же на этапе молочной кислоты возникают аэробные условия, то она превращается в пировиноградную кислоту, которая уже окисляется в цикле Кребса.

Глюкоза используется для синтеза лактозы, липидов, глицерина, аминокислот, жирных кислот.

У жвачных животных углеводы кормов в большей части превращаются, сбраживаются в преджелудках до образования летучих жирных кислот: уксусной, пропионовой и масляной, которые всасываются в кровь. Затем в организме уксусная, пропионовая и масляная кислоты используются для образования липидов и кетоновых тел; пропионовая кислота – для синтеза глюкозы; уксусная, масляная и пропионовая кислоты окисляются в тканях органов с образованием АТФ, диоксида углерода и воды.

В крови человека и моногастричных животных обеспечивается концентрация глюкозы на уровне 1,0… 1,2 г/л, у полигастричных – 0,42…0,6 г/л.

Обмен минеральных веществ

Минеральные вещества в целом связывают воедино превращение и использование питательных веществ в организме, так как они необходимы для построения клеток, белков, ферментов, гормонов, участвуют ^физиологических процессах – нервном возбуждении, мышечном сокращении, свертывании крови и др.

В организме более 80 элементов, из них 15 жизненно необходимых. Их подразделяют на макро- и микроэлементы. К макроэлементам относят кальций, фосфор, калий, натрий, хлор, серу и магний, к микроэлементам – железо, медь, цинк, йод, марганец, кобальт, молибден, селен и др.

Обмен их осуществляется в три фазы: поступление с кормом и водой; освобождение и всасывание в кровь с использованием во всех процессах; выведение отдельно в основном с мочой и калом при поступлении в избытке и в составе различных соединений.

Роль макроэлементов. Кальций. Входит в состав опорных тканей организма – костную и мышечную, содержится постоянно в крови. Он способствует сокращению мышц, принимает участие в свертывании крови, стимулирует рождение импульсов в сердечной и гладких мышцах, участвует в определении проницаемости клеточных мембран. Кальций входит в состав молока.

Фосфор. В больших количествах включается в костную ткань в виде солей с кальцием, постоянно содержится в крови. Он входит в состав АТФ, поэтому принимает участие во всех процессах в организме.

Магний. Преимущественно входит в состав костной ткани, мышц, где включается в комплекс миозина и АТФ. Способствует взаимодействию его с актином, постоянно содержится в крови. Он является одним из основных элементов клетки и образует в ней комплексы с белками, стимулирует процессы окислительного фосфорилирования в митохондриях. Магний необходим для жизнедеятельности микроорганизмов в пищеварительном тракте.

Калий. Внутриклеточный элемент, принимает участие в возникновении и распространении возбуждения по мембране клетки, в транспорте веществ через мембрану клетки.

Натрий. Внеклеточный элемент, вместе с калием участвует в возникновении и распространении возбуждения по мембране клетки, повышает возбудимость нервной и мышечной ткани. Он обеспечивает осмотическое давление крови, служит щелочным резервом.

Хлор. Совместно с натрием обеспечивает осмотическое давление крови. Необходим для поддержания возбудимости возбудимых тканей. Он используется для образования соляной кислоты желудочными железами.

Сера. Входит в состав незаменимых аминокислот, гормонов, витаминов, поэтому ее физиологическая роль определяется их ролью.

Роль микроэлементов. Железо. Образует стабильные комплексы с белками и углеводами и участвует в процессах организма: в эритроцитах – транспорта кислорода и диоксида углерода, в мышцах – тканевого дыхания.

Медь. Находится во всех тканях организма в составе белка церулоплазмина. Она обладает большой биологической активностью. Участвует в процессах кроветворения, ускоряет включение железа в гемоглобин в эритроците; оказывает стимулирующее влияние на защитные механизмы организма, повышает воспроизводительную функцию организма. Она необходима для роста шерсти, пера.

Кобальт. Распределяется во всех тканях организма; много в эритроцитах. Он включается в состав витамина цианкобаламина, который необходим для кроветворения. Кобальт стимулирует рост организма.

Цинк. В больших количествах содержится в крови, распределяется в тканях организма. Он образует непрочное соединение с гормоном инсулином и другими гормонами, осуществляя через них стимулирование роста, воспроизводительной функции организма. Цинк необходим для процесса кроветворения и образования костей скелета.

Марганец. Содержится в значительных количествах в костях скелета, в печени и других органах и тканях, крови. Он стимулирует через фермент щелочную фосфатазу отложение жира, образование белка, кроветворение и повышает защитные силы организма.

Молибден. Участвует в обмене пуринов, оказывая этим выраженное влияние на него организма.

Йод. Задерживается в организме в больших количествах щитовидной железой. Она использует йод для синтеза своих гормонов: трийодтиронина и тироксина. Свое влияние на организм йод оказывает через эти гормоны. Он стимулирует обмен белков, жиров и углеводов, повышает сопротивляемость к вредным воздействиям окружающей среды, ускоряет синтез ферментов.

Селен. Обладает большой биологической активностью, включается в обменные процессы и обеспечивает нормальное функционирование кожи, мышц. Он стимулирует рост и развитие организма, повышает его реактивность и резистентность.

Фтор. Участвует в минерализации костей и зубов, стимулирует рост, репаративные процессы, образование антител. Усиливает действие кальциферола.

Хром. Включается в фермент трипсин.

Бром. Усиливает процесс торможения в центральной нервной системе.

В крови животных поддерживается оптимальное для обмена веществ количество минеральных веществ – 9,0 г/л. При недостатке внутренних резервов минеральных веществ животные осуществляют поиск их источников. При повышении концентрации веществ в крови они откладываются в депо, увеличивается выделение их с мочой, уменьшается их всасывание из желудочно-кишечного тракта. В том и другом случаях включаются механизмы нервно-гормональной регуляции обмена минеральных веществ.

Обмен воды

Большую роль в обмене веществ играет вода, которая не является ни питательным веществом, ни источником энергии.

Организм животных содержит воды 60…70% от массы тела. Она входит в состав всех клеток тела, пищеварительных соков, плазмы крови, лимфы, тканевой жидкости и др. Наибольшее количество воды сосредоточено внутри клеток. Внеклеточная вода включает плазму крови, межклеточную жидкость и лимфу. Трансцеллюлярная вода – спинномозговая, внутриглазная, брюшной полости, плевры, перикарда, суставных сумок, желудочно-кишечного тракта. Между внеклеточной и внутриклеточной водой осуществляется постоянный обмен. Структура воды в клетках соответствует таковой в льдоподобном состоянии.