Смекни!
smekni.com

Нейропептиды-лекарства (стр. 3 из 6)

Фактор стимулирует дифференцировку клеток и поддерживает их жизнеспособность в симпатических и сенсорных структурах на периферии и в холинэргических участках ЦНС, в основном в базальном переднем мозге и в полосатом теле. NGF стимулирует синтез ферментов, вовлеченных в метаболизм катехоламинов и нейрон-специфических пептидов, таких как вещество Р, соматостатин и холецистокинин. Эта регуляторная функция NGF осуществляется не только в период нейрональной дифференцировки, но также является важным звеном поддержания нейрональной активности взрослых организмов.

3.1.1 Нейротрофический фактор мозга (bdnf)

Структура. Химическая характеристика. Димер с общим МВ 27,2 кДа, структурно сходен с NGF; идентичность аминокислотной последовательности BDNF у свиньи и крысы свидетельствует о видовой консервативности фактора.

Общая характеристика. Подобно другим нейротрофинам, BDNF участвует в развитии и сохранении нейрональных клеток мозга, включая сенсорные нейроны, допаминергические нейроны черной субстанции, холинергические нейроны переднего мозга, гиппокампа, ганглиев сетчатки. В мозге мРНК BDNF и сам полипептид идентифицированы в гиппокампе, амигдале, таламусе, пирамидных клетках неокортекса, в мозжечке. BDNF координирует развитие дорзальных и вентральных участков нейрональной структуры. В целом, распространение BDNF в нейроструктурах значительно большее, чем для NGF. BDNF и его мРНК обнаружены в плаценте и в периферических ганглиях.

Баланс глутаматергической и ГАМК-ергической систем контролирует уровень экспрессии BDNF. Блокада глутаматергического звена и/или стимуляция ГАМК ведет к быстрому снижению уровня мРНК BDNF. BDNF модулирует постсинаптическое торможение ГАМК-ергической нейротрансмиссии.

С помощью рекомбинантного BDNF человека (rh BDNF) доказано существование ретроградного аксонального транспорта фактора в неокортексе и лимбической коре крыс. Ретроградный транспорт BDNF был идентифицирован в коре переднего мозга, латеральном гипоталамусе, структурах locus coeruleus в и других отделах мозга (Sobreviela T. et al, 1996).

3.1.2 Нейротрофин-3 (nt-3)

Химическая характеристика. NT-3 образуется из макромолекулярного предшественника и является полипептидом, включающим 119 аминокислотных остатков. Его структура на 50% соответствует гомологии NGF и BDNF. Полипептидная цепь NT-3 содержит 6 остатков цистеина, образуя три дисульфидных мостика, совершенно соответствующих структуре NGF.

Общая характеристика. NT-3 обладает активностью, характерной для остальных членов семейства нейротрофинов. Он стимулирует развитие и жизнеспособность нейрональной популяции, промотирует дифференцировку клеток. Кроме того, NT-3 модулирует функцию проприоцептивных афферентных нейронов, передающих информацию от периферических мышечных волокон к мотонейронам.

В период развития мозга NT-3 экспрессируется в больших количествах, чем NGF и BDNF; у взрослых крыс высокая концентрация NT-3 выявлена в структурах гиппокампа и мозжечка. Наряду с NGF нейротрофин-3 участвует в эмбриональном и постнатальном развитии симпатических нейронов. Нейтрализация активности факторов специфическими антителами ведет к апоптозу этих клеток.

Помимо участия в постнатальном развитии нервных клеток, NT-3 способствует регуляции трансмиттерных функций и жизнеспособности нейронов взрослого мозга. NT-3 увеличивает выживаемость допаминергических нейронов мезэнцефалона и предотвращает дегенерацию норадренергических клеток Locus ceruleus.

Развитие мышечной дегенерации связывается с недостаточной экспрессией мРНК NT-3. Способность NT-3 промотировать репарацию поврежденных клеток может иметь терапевтическое приложение.

Функции NT-3 реализуются при участии рецепторов протеинкиназы типа Trk-C.

3.1.3 Нейротрофин-4/5 (nt-4/5)

Химическая и общая характеристики. Именуемый как Нейротрофин-4/5 (NT-4/5), или NF-5, представляет собой димерный полипептид с общей массой 28 кДа. Экспрессируется во многих тканях и в большинстве регионов мозга.

Фактор промотирует выживание и дифференцировку нейронов различных популяций, включая спинальные нейроны, базальные холинергические нейроны переднего мозга, нейроны гиппокампа и гранулярные клетки мозжечка. В эмбриональном мозге NT-4/5 обнаруживается в небольших количествах основных отделов ствола мозга, достигая наибольших значений к 40 дню развития (Katoh-Semba et al. 2003).

Наряду с BDNF, NT-4/5 ускоряет образование дендритов в пирамидных клетках коры за счет аутокринного механизма (Wirth et al. 2003). Подобно другим нейротрофинам, NT-4/5 влияет на активность норадренергических структур в Locus coeruleus, а также допамин-, ГАМК-, и серотонинергические нейроны в черной субстанции. Недостаточная экспрессия NT-4/5 ведет к незначительной гибели сенсорных нейронов мышей, указывая на ограниченную роль фактора в нейропротекции развивающихся и зрелых клеток. Подобно BDNF, NT-4/5 специфически взаимодействует с Trk-В рецепторами.

3.1.4 Глиальный нейротрофический фактор (gdnf)

Химическая структура и общая характеристика.

Гликозилированный гомодимер с МВ 33-45 кДа. Образуется в результате процессинга 135 - членного предшественника. Структурно сходен с нейротрофинами, имеющими цистеиновые мостики, и представителями семейства TNF-beta.

Впервые выделен в 1993 году из допаминергических нейронов глиальных клеток среднего мозга крысы (Lin et al. 1993). Распространен практически во всех больших регионах ЦНС и в спинном мозге. GDNF рассматривается как аутокринный регулятор нейромышечной активности; влияет на рост аксонов, экспрессию генов нейрональной регенерации и поддерживает фенотип мотонейронов при возрастной патологии ЦНС.

Фактор способствует сохранению различных популяций клеток центральной и периферической нервной системы, включая допаминергические нейроны среднего мозга, клеток Пуркинье, нейронов зрительной системы, мотонейронов ганглиев дорзальных рогов спинного мозга.

3.2 Подсемейство ростовых факторов

3.2.1 Инсулиноподобный ростовой фактор (igf-i)

Известен также как Соматомедин С. Синтезируется в печени и секретируется под влиянием гипофизарного гормона роста. Экспрессия IGF-I в других органах зависит от вида ткани и стимулирующего стимула.

IGF-I обладает митогенной активностью для фибробластов, остеобластов, фетальных клеток мозга, глиальных клеток, гладкомышечных клеток. Продуцируется некоторыми опухолями человека. IGF-I присутствует в качестве основной формы в мозге и экспрессируется в нервной ткани в период развития, присутствуя в наивысших концентрациях в зрительном тракте, таламусе и мозжечке. Рецептор IGF-I присутствует в высоких концентрациях во всех отделах развивающейся нервной ткани.

IGF-I исполняет роль аутокринного или паракринного агента пролиферации нейрональных и глиальных клеток и облегчает их дифференцировку и переживание. Эксперименты показывают, что в период развития IGF-I защищает моторные нейроны от клеточной гибели в условиях повреждения и способствует регенерации аксонов. У взрослых животных инъекции IGF-I промотируют спроутинг нервных окончаний и увеличивают размеры нейромускулярных контактов.

Эти данные указывают на возможное применение IGF-I в терапии неврологических заболеваний, включая латеральный амиотрофический склероз и периферические невропатии (Landreth et al. 1999). IGF-I рассматривается как полипептидный гормон, потенциальный нейропротектор в терапии инсульта и других форм нейрональных расстройств. Относительно крупные размеры молекулы делают затруднительным прямое использование фактора в клинике; апробируются формы интраназального введения IGF-I.

3.2.2 Трансформирующий ростовой фактор-альфа (tgf-alpha)

Структура. Общая характеристика. Секретируемый полипептид с МВ 5,5 кДа, включающий 50 аминокислотных остатков; структурно на 30% повторяет гомологию EGF и содержит шесть цистеиновых остатков. TGF-alpha экспрессируется в моноцитах, кератиноцитах, во многих опухолях, а также в плаценте, в почках, гипофизе.

Синтез Ростового фактора фибробластов (FGF) в астроцитах гипоталамуса регулируется TGF-alpha при участии эстрогена (Galbiati et al. 2002). мРНК TGF-alpha детектирована на всех стадиях развития ЦНС, что указывает на его аутокринно-/паракринную функцию в контроле дифференцировки и роста фетального и неонатального мозга. Участвует в астроглиозе после экспериментального повреждения мозга и во время нейродегенерации.

TGF-α препятствует апоптозу клеток мозга. Колотая травма коры мозга сопровождается повышенной экспрессией TGF-alpha, которая вызывает гипертрофию астроцитов; в репаративном механизме, развивающемся вокруг зоны повреждения, участвуют также глиальный кислый белок и интерлейкин-6 (Isono et al. 2003).

3.3 Молекулярно-биохимические аспекты механизма действия церебролизина

Сложный химический состав природного концентрата Церебролизина и его мультимодальное действие на нервную систему не позволяет рассматривать препарат как аналог какого-либо одного нейротрофического ростового фактора. Это своеобразный "терапевтический коктейль", в который входят различные биологически активные нейропептиды. Благодаря уникальному природному набору активных субстанций, Церебролизин (ЦР) воздействует на различные "мишени" нейрональных структур и, соответственно, корригирует различные звенья патологического процесса в мозге. В результате сложного взаимодействия комплекса факторов, входящих в состав препарата, с нейрональными структурами может быть достигнута нейротрофическая стимуляция различных популяций клеток центральной и периферической нервной системы.

В многочисленных экспериментальных исследованиях было установлено, что ЦР повышает сниженный при различных деменциальных патологиях уровень экспрессии гена BBBGLUT-1. Поскольку соответствующий данному гену белок выполняет функцию транспортера глюкозы через гематоэнцефалический барьер, введение препарата способствует улучшению церебрального метаболизма глюкозы.