4. Кровопостачання нервових клітин
Висока потреба нейронів у кисні і глюкозі забезпечується інтенсивним кровотоком. Кров протікає через мозок в 5-7 разів швидше, ніж через покояться м'язи. Мозкова тканина рясно забезпечена кровоносними судинами. Найбільш густа мережа їх знаходиться в корі великих півкуль (займає близько 10% обсягу кори). Кожен великий нейрон має кілька власних капілярів у підстави тіла клітини, а групи дрібних клітин оповиті загальної капілярної мережею. При активному стані нервової клітини, вона потребує посиленого надходження через кров кисню і поживних речовин. Разом з тим жорсткий каркас черепа і мала стисливість нервової тканини перешкоджає різкого збільшення кровопостачання мозку при роботі. Однак це компенсується вираженими в мозку процесами перерозподілу крові, в результаті яких активна ділянка нервової тканини отримує значно більше крові, ніж знаходиться в спокої. Можливість перерозподілу крові в мозку забезпечена наявністю в підставах артеріальних гілок великих пучків гладких м'язових волокон - сфінктерних валиків. Ці валики можуть зменшувати або збільшувати діаметр судин і тим самим виробляти роздільну регуляцію кровопостачання різних ділянок мозку. М'язова робота викликає зниження тонусу стінок мозкових артерій. При розвитку фізичного і розумового стомлення тонус артеріальних судин підвищується, що веде до зменшення кровотоку через нервову тканину. У головному мозку є багато розвинена система анастомозів між різними артеріями, між венозними судинами і між артеріями і венами. Ця система зменшує пульсацію внутрішньочерепного кровотоку, обумовлену ритмічними скороченнями серця і дихальними рухами грудної клітини. Зменшення пульсових коливань сприяє поліпшенню тканинного кровотоку. Завдяки наявності артеріовенозних анастомозів пульсові коливання кровотоку передаються з артерії мозку на вени, минаючи капіляри. Анастомоз між системами сонних і хребетних артерій гарантує сталість кровотоку в різних відділах головного мозку при будь-якому положенні голови по відношенню до тулуба і напрямку сили тяжіння, пов'язаному зі зміною положення тіла в просторі.
5. Клітини глії
У процесі живлення нервових клітин і їх обміні речовин беруть участь також навколишні нейрон клітини глії (гліальні клітини, або нейроглії). Ці клітини заповнюють в мозку весь простір між нейронами. У корі великих півкуль їх приблизно в 5 разів більше, ніж нервових клітин. Капіляри в центральній нервовій системі щільно оточені клітинами глії, які покривають посудину або залишають невелику частину (15%) вільною. Вирости деяких гліальних клітин розміщені частково на кровоносних судинах і частково в нейроні. Вважають, що розташування цих клітин між посудиною і нейроном вказує на їх роль у постачанні нервових клітин поживними речовинами з крові. Гліальні клітини активно беруть участь у функціонуванні нейрона. Показано, що при тривалому порушенні в нейроні високий вміст білка і нуклеїнових кислот підтримується за рахунок клітин глії, в яких їх кількість відповідно зменшується. У процесі відновлення після роботи запаси білка і нуклеїнових кислот спочатку наростають в клітинах глії, а потім у цитоплазмі нейрона. Гліїальние клітини мають здатність переміщатися в просторі у напрямку до найбільш активним нейронам. Це спостерігається при різних аферентних подразненнях і при м'язовій навантаженні. Наприклад, вже через 20 хв плавання у щурів було виявлено збільшення числа гліїальних клітин навколо мотонейронів переднього рогу спинного мозку.
Можливо, клітини глії беруть участь в умовно-рефлекторної діяльності мозку і в процесах пам'яті.
6. Основні функції нервової клітини
Основними функціями нервової клітини є сприйняття зовнішніх подразнень (рецепторна функція), їх переробка (інтегративна функція) і передача нервових впливів на інші нейрони або різні робочі органи (ефекторна функція)
Особливості здійснення цих функцій дозволяють розділити всі нейрони ЦНС на дві великі групи:
1) Клітини, що передають інформацію на великі відстані (з одного відділу ЦНС до іншого, від периферії до центру, від центру до виконавчого органу). Це великі аферентні і еферентні нейрони, що мають на своєму тілі і відростках велику кількість синапсів, як гальмують, так і збуджуючих, і здатні до складних процесів переробки надходять через них впливів.
2) Клітки, що забезпечують межнейроальний зв'язок в межах органічних нервових структур (проміжні нейрони спинного мозку, кори великих півкуль та ін.) Це дрібні клітини, що сприймають нервові впливи тільки через збуджуючі синапси. Ці клітини не здатні до складних процесів інтеграції локальних синоптичних впливів потенціалів, вони служать передавачами збуджуючих або гальмують впливів на інші нервові клітини.
6.1 Сприймаюча функція нейрона
Всі подразнення нервової системи, передаються на нейрон через певні ділянки його мембрани, що знаходяться в області синаптичних контактів. У більшості нервових клітин ця передача здійснюється хімічним шляхом за допомогою медіаторів. Відповіддю нейронів на зовнішнє роздратування є зміна величини мембранного потенціалу. Чим більше синапсів на нервовій клітині, тим більше сприймається різних подразнень, і, отже, ширше сфера впливів на її діяльність і можливість участі нервової клітини в різноманітних реакціях організму. На тілах великих мотонейронів спинного мозку налічують до 15 тис. до 20 тис. синапсів. Розгалуження аксонів можуть утворювати синапси на дендритах (аксодендрічні синапси) і на сомі (тілі) нервових клітин (аксосоматичніе синапси). У ряді випадків на аксоні (аксоаксональні синапси) найбільше число до 50% синапсів знаходиться на дендритах. Особливо густо вони покривають середні частини і закінчення дендритних відростків, при чому багато контакти розташовані на спеціальних шиповидних виростах, або шипиками, які ще більше збільшують сприйнятливу поверхню нейрона. в мотонейронах спинного мозку і пірамідальних клітинах кори поверхню дендритів в 10-20 разів більше поверхні клітини. Чим складніше інтегративна функція нейрона, тим більший розвиток мають аксодендритичні синапси (в першу чергу ті, які розташовані на шипики). Особливо вони характерні для нейрональних зв'язків пірамідальних клітин в корі великих півкуль. Проміжні нейрони (наприклад, зірчасті клітини кори) таких шипиків позбавлені. Надходять в пресинаптичну зв'язок контакту нервові імпульси, викликають спорожнення синаптичних пухирців з виведенням медіатора в синаптичну щілину. Речовинами, які передають нервові впливи синаптичних нервових клітин, або медіаторами, можуть бути ацетилхолін (у деяких клітинах спинного мозку у вегетативних гангліях), норадреналін (в закінченнях симпатичних нервових волокон, в гіпаталамусі), деякі амінокислоти і багато ін Діаметр бульбашок приблизно дорівнює ширині синаптичної щілини. У клітинах передній центральній звивині кори великих півкуль у людей 18-30 років синаптичні пухирці мають діаметр 250-300 ангстрем при ширині синаптичної щілини 200-300 ангстрем. Виділення медіатора полегшується тим, що синаптичні пухирці скупчуються поблизу від синаптичної щілини в так званих активних або оперативних зонах. Чим більше нервових імпульсів проходить через синапс, тим більше бульбашок переміщається в цю зону і прикріплюється до пресинаптичної мембрани. У результаті полегшується виділення медіатора подальшими нервовими імпульсами.
6.2 Інтегративна функція нейрона
Загальна зміна мембранного потенціалу нейрона є результатом складної взаємодії (інтеграції) місцевих ВПСП і ТПСП всіх численних активованих синапсів на тілі та дендритах клітини. На мембрані нейрона відбувається процес алгебраїчного підсумовування позитивних і негативних коливань потенціалу. При одночасній активації декількох збуджуючих синапсів загальний ВПСП нейрона представляє суму окремих місцевих ВПСП і ТПСП - відбувається взаємне віднімання їх ефектів. У кінцевому підсумку реакція нервової клітини визначається сумою всіх синаптичних впливів. Переважання гальмівних синаптичних впливів призводить до гіперполяризації мембрани і гальмування діяльності клітини. При зсуві мембранного потенціалу в бік деполяризації підвищується збудливість клітини. Відповідний розряд нейрона виникає лише тоді, коли зміни мембранного потенціалу досягають граничного значення - критичного рівня деполяризації. Для цього величина ЗПСП клітки повинна складати приблизно 10 мв. У великих (аферентних і еферентних) нейронах збудливість різних ділянок мембрани неоднакова. З моменту досягнення критичного рівня деполяризації починається лавиноподібне входження натрію в клітку і реєструється потенціал дії (ПД).
6.3 Ефекторні функції нейрона
З появою ПД, який на відміну від місцевих змін мембранного потенціалу (ЗПСП і ТПСП) є розповсюджується процесом, нервовий імпульс починає проводитися від тіла нервової клітини вздовж по аксону до іншої нервовій клітині або робочого органу, тобто здійснюється ефекторна функція нейрона. Синапси, розташовані ближче до збудливої Низькопорогової зони на тілі клітини надають більший вплив на виникнення потенціалу дії, ніж більш віддалені, розташовані на кінчиках дендритів. Імпульси, які приходять через аксосоматичний синапс, як правило, викликають у відповідь розряд нейрона, а імпульси, що діють на аксодендритичений синапс - лише підпорогове зміна його збудливості. Так, розряди мотонейронів спинного мозку і пірамідних нейронів кори, що викликають рухові реакції організму, є відповіддю на специфічні аксодендритичені впливу. Але виникне ця відповідь чи ні, визначається характером впливів, що надходять через аксодендритичені синапси від інших нервових шляхів. Так складаються адекватні реакції, що залежать від багатьох подразнень, що діють на організм у даний момент часу, і здійснюється тонке пристосування поведінки до мінливих умов зовнішнього середовища.