Идея генетического кода подразумевает существование определенного механизма перевода нуклеотидной последовательности ДНК в аминокислотную последовательность белков. С середины 50-х до начала 60-х годов молекулярные основы генетического кода и механизм его расшифровки при сборке полипептидной цепи были установлены. Раскрытие этой тайны стало одним из монументальных достижений молекулярной генетики. Неожиданно код оказался очень простым и абсолютно одинаковым для всех жизненных форм. Более того, выяснилось, что универсальны и общие правила трансляции генетически закодированных посланий.
Генетический словарь состоит из 64 кодонов, каждый из которых представлен тремя последовательно расположенными нуклеотидами в цепи ДНК.61 из 64 триплетов кодируют аминокислоты, причем каждый триплет - только одну аминокислоту. Один из этих триплетов имеет двойную функцию: кодирует аминокислоту метионин и обозначает начало фрагмента ДНК, кодирующего белок. Каждый из трех остальных триплетов может служить сигналом окончания последовательности, кодирующей белок. Генетический код вырожден, поскольку одной и той же аминокислоте может соответствовать более чем один кодон; но, с другой стороны, код не двусмысленный, потому что любой кодон обозначает только одну аминокислоту. Если известен словарь кодонов, то перевести генную последовательность в соответствующий белковый продукт не составляет труда.
Для экспрессии гена в виде белкового продукта сначала должна произойти транскрипция ДНК с образованием РНК. Этот процесс осуществляется с помощью РНК-полимераз - ферментов, катализирующих синтез цепи РНК путем копирования нуклеотидной последовательности одной цепи ДНК с помощью комплиментарного спаривания оснований. Гены, кодирующие белки, детерминируют синтез молекулы "мессенджер", или матричной РНК, называемой так потому, что она несет генетическую информацию, закодированную в соответствующем сегменте ДНК, и непосредственно участвует в сборке белков. Некоторые гены не кодируют никаких белков. При их транскрипции образуются не мРНК, а молекулы РНК, необходимые для образования зрелых РНК разного типа и для трансляции мРНК в белки.
Исследование взаимодействия РНК-полимераз и других вспомогательных белков транскрипции с ДНК расширило наши знания о специфичности и прочности межмолекулярных взаимодействий. Так, было показано, что осуществляются очень точные молекулярные контакты между белками и специфичными группами нуклеотидов в ДНК, а это в свою очередь открыло новые перспективы в исследовании проблем экспрессии и регуляции генов. Мы вкратце прокомментируем, как такие взаимодействия опосредуют регуляцию работы генов.
В рамках вводной главы невозможно описать такой совершенный процесс, как трансляция последовательности нуклеотидов матричной РНК в белковую цепь. Он действительно очень сложен и состоит из множества повторяющихся этапов. Трансляцию молекул мРНК в белки катализируют рибонуклеопротеиновые частицы, содержащие более 50 различных белков и три вида молекул РНК. Синтез белковой цепи начинается с присоединения рибосом к матричной РНК. Белковая цепь удлиняется на одну аминокислоту, когда рибосома продвигается вдоль молекулы мРНК на один кодон. Ключевой момент трансляции - перевод генетической информации, закодированной в триплетных кодонах матричной РНК, в специфические аминокислоты - зависит от комплиментарного спаривания оснований. Каждая аминокислота присоединяется к особой, родственной ей транспортной РНК, содержащей триплет, комплиментарный кодоновому триплету в матричной РНК. Благодаря спариванию оснований между кодоном мРНК и антикодоном тРНК нужная аминокислота занимает свое место в растущей полипептидной цепи. За один цикл перемещения рибосомы по всей длине молекулы мРНК, кодирующей данный белок, образуется одна молекула этого белка.
Изучение экспрессии генов - только один из аспектов исследования механизма их действия. Другой связан с регуляторными процессами, контролирующими время и степень экспрессии при разных условиях. Неудивительно, что прогресс в понимании механизма транскрипции и трансляции позволил прояснить и проблему регуляции. Так, было показано, что у бактерий регуляция экспрессии генов происходит дифференцированно. Действительно, при некоторых условиях многие гены не экспрессируются вовсе, а степень экспрессии других различается на порядки. Однако изменение условий может приводить к активации молчавших ранее генов и, напротив, к репрессии активных. Это предоставляет клеткам широкие возможности для изменчивости, обеспечивающей приспособленность их фенотипов к условиям среды.
Экспрессия генов обычно регулируется на уровне образования РНК. Как правило, инициация транскрипции регулируется либо репрессорными белками, блокирующими транскрипцию, либо активаторными, необходимыми для ее запуска. В первом случае экспрессия начинается после снятия репрессии в результате модификации белка-репрессора. Во втором ген транскрибируется только в том случае, если активаторный белок находится в соответствующем функциональном состоянии. Репрессорные и активаторные белки - не единственные средства регуляции транскрипции. В некоторых случаях белки - продукты генной экспрессии - сами служат регуляторами транскрипции собственных генов. Известны также случаи, когда на эффективность транскрипции влияют структурные изменения в ДНК. Образование РНК может регулироваться и путем контроля скорости элонгации или места ее окончания, т.е. транскрибироваться может весь ген или какая-то его часть при наличии специфического стоп-сигнала. Экспрессия генов может также регулироваться на уровне трансляции матричной РНК в белки. В этом случае специфическая регуляция тоже обычно осуществляется на начальных этапах процесса декодирования.