Смекни!
smekni.com

Смешение жидких потоков в трубчатых турбулентных аппаратах диффузор-конфузорной конструкции (стр. 2 из 2)

Уменьшение диаметра аппарата приводит к снижению характерных времен смешения, что является ключом к проведению быстрых процессов в оптимальных условиях, однако это приводит к снижению численных значений коэффициента турбулентной диффузии Dт (рис. 5). Именно численные значения Dт определяют нижний предел возможности использования трубчатых турбулентных аппаратов в условиях промышленного производства по геометрическим параметрам. Расчеты показывают, что при dк<0,023 м, Vк=4 м/с и

=450 коэффициент диффузии принимает значение D<10-4 м2/с, что характерно для переходного режима течения жидких потоков в цилиндрических каналах [9]. Верхний предел по диаметру трубчатого турбулентного аппарата определяется нарушением соотношений
х<
tur и/или L>V
tur.

Рис. 5. Зависимость коэффициента турбулентной диффузии Dт от диаметра трубчатого турбулентного аппарата dк и линейной скорости движения жидких потоков Vк.

=450.

Рис. 6. Зависимость диссипации удельной кинетической энергии турбулентности

от диаметра трубчатого турбулентного аппарата dк и линейной скорости движения жидких потоков Vк.
=450.

Использование трубчатых турбулентных аппаратов малого диаметра приводит к увеличению средних значений диссипации удельной кинетической энергии турбулентности

(рис. 6). Максимальная величина
определяет интенсивность смешения жидких потоков на микроуровне (Колмогоровский масштаб [3, 10, 11]), что обеспечивает возникновение мелкомасштабных сдвиговых деформаций и, как следствие, получение тонкодисперсных эмульсий [10] и суспензий [11]. В этом случае уменьшение диаметра трубчатого турбулентного аппарата диффузор-конфузорной конструкции и увеличение линейной скорости подачи реагентов адекватно увеличению числа оборотов и диаметра лопатей механической мешалки в объемных реакторах смешения.

Таким образом, изменяя геометрию (дизайн) трубчатого турбулентного аппарата диффузор-конфузорной конструкции, динамику его работы, а также физические параметры жидких потоков, можно оптимизировать значения характеристик турбулентного смешения в соответствии со спецификой протекающего процесса, лимитируемого массообменом. Существует интервал значений диаметра трубчатого турбулентного аппарата диффузор-конфузорной конструкции и линейной скорости движения жидких потоков, при котором создаются условия для снятия диффузионных ограничений протекания быстрых процессов. В соответствии с характером процесса (кинетические параметры, физические характеристики жидких потоков и т.д.) полученные в работе закономерности позволяют выбирать оптимальные условия для его проведения.

Список литературы

Берлин А.А., Минскер К.С., Дюмаев К.М. Новые унифицированные энерго- и ресурсосберегающие высокопроизводительные технологии повышенной экологической чистоты на основе трубчатых турбулентных реакторов. М.: ОАО “НИИТЭХИМ”, 1996. 188 с.

Берлин А.А., Минскер К.С., Захаров В.П. // Доклады РАН. 1999. Т. 365. № 3. С. 360-363.

Тахавутдинов Р.Г., Дьяконов Г.С., Дебердеев Р.Я., Минскер К.С. Турбулентное смешение в малогабаритных трубчатых аппаратах химической технологии // Химическая промышленность. 2000. № 5. С. 41-49.

Минскер К.С., Берлин Ал.Ал., Тахавутдинов Р.Г. и др. // Доклады РАН. 2000. Т. 372. № 3. С. 347-350.

Берлин А.А., Минскер К.С., Дебердеев Р.Я. // Доклады РАН. 2000. Т. 375. № 2. С. 218-221.

Бусыгин В.М., Дьяконов Г.С., Минскер К.С., Берлин Ал.Ал. // Сумма технологий. 2000. Т. 3. № 4. С. 48-49.

Байзенбергер Д.А., Себастиан Д.Х. Инженерные проблемы синтеза полимеров. М.: Химия, 1988. 688 с.

Брагинский Л.Н., Бегачев В.И., Барабаш В.М. Перемешивание в жидких средах: Физические основы и инженерные методы расчета. Л.: Химия, 1984. 336 с.

Maggioris D., Goulas A., Alexopoulas A.H. etc. // Chemical Engineering Science. 2000. V. 55. Р. 4611-4627.

Sung M.-H., Choi I.-S., Kim J.-S., Kim W.-S. // Chemical Engineering Science. 2000. V. 55. Р. 2173-2184.

Касаткин А.Г. Основные процессы и аппараты химической технологии. М.: Химия, 1971. 784 с.