Производственные сточные воды имеют специфический состав, поэтому их необходимо искусственно подпитывать биогенными элементами и разбавлять, дифференцировать подачу воздуха, активного ила и сточной жидкости в аэротенки, чтобы обеспечить оптимальное соотношение между количеством вводимых загрязнений, воздухом и активным илом.
Для очистки производственных сточных вод чаще используются аэротенки, так как они лучше других сооружений могут регулировать режим работы при изменении состава стока и имеют большую пропускную способность на единицу объема сооружения. При БПКполн менее 500 мг/л применяют обычные аэротенки с подачей сточной воды и активного ила в начало аэротенка. При содержании ядовитых и трудно окисляемых веществ в сточных водах, а также при БПКполн более 500 мг/л применяют аэротёнки-смесители. Их конструкция позволяет выравнивать скорость потребления кислорода и концентрацию загрязнений подлине аэротенка.
После биологической очистки количество бактерий в сточных водах значительно уменьшается. Так, при биологической очистке на искусственных сооружениях (на биофильтрах или аэротенках) общее содержание бактерий уменьшается на 95 %, при очистке на полях орошения – на 99%. Однако полностью уничтожить болезнетворные бактерии можно только обеззараживанием сточных вод. Сточные воды обеззараживают различными способами: хлорированием, электролизом, бактерицидными лучами и др.
Наибольшее распространение получил способ хлорирования сточных вод. Хлор вводят в сточную воду или в виде хлорной извести, или в газообразном виде. Количество активного хлора, вводимого на единицу объема сточной воды, называется дозой хлора и выражается в граммах на 1 м3 (г/м3).
По СНиП 2.04.03-85 расчетную дозу активного хлора следует принимать: после механической очистки сточных вод – 10 г/м3; после полной искусственной биологической очистки – 3 г/м3; после неполной искусственной биологической очистки – 5 г/м3. Хлор, добавленный к сточной воде, должен быть тщательно перемешан с ней. Для того чтобы обеспечить бактерицидный эффект, хлор следует держать в контакте со сточной водой до 30 мин, после чего воду можно спустить в водоем.
Установка для хлорирования газообразным хлором состоит из хлораторной, смесителя и контактных резервуаров. В хлораторной устанавливают хлораторы для приготовления раствора хлорной воды из хлоргаза. Хлораторы разделяются на две основные группы: напорные и вакуумные.
Отбор хлора производится из стальных баллонов объемом 30-55 л. Баллон снабжен сифонной трубкой, опущенной почти до дна, через которую хлор выходит из баллона. В хлоратор подается газообразный хлор. Хлоропровод, идущий к дозатору, присоединяют к промежуточному баллону для впуска жидкого и выпуска газообразного хлора. Расход хлора из баллонов определяют с помощью весов, на которых размещают баллоны с жидким хлором. Из хлоратора выходит хлорная вода с определенной дозой хлора и смешивается со сточной водой. Для смешения используют смесители различных конструкций.
Выпуск сточных вод в водоем
Очищенные сточные воды при искусственной очистке отводят по каналу к месту спуска их в водоем. Отводной канал обычно заканчивается береговым колодцем, из которого очищенные сточные воды через выпуск сбрасываются в водоем. Чем благоприятнее условия для перемешивания спускаемых сточных вод с водами водоема, чем лучше используется самоочищающая способность водоема, тем более загрязненные сточные воды могут быть сброшены в него.
Выпуски сточных вод классифицируются по типу водоема (речные, озерные и морские), по месту расположения (береговые, русловые и глубинные) и по конструкции (сосредоточенные и рассеивающие).
Береговые сосредоточенные выпуски проектируются в виде открытых каналов, быстротоков, консольных сбросов, оголовков. При этом происходит весьма незначительное разбавление сбрасываемых сточных вод с водой водоема, поэтому использование самоочищающей способности водоемов очень низко. Такие выпуски применяют для сброса дождевых или малозагрязненных сточных вод. Чаще устраивают русловые рассеивающие выпуски, обеспечивающие наилучшее смешение сточных вод с речными. Глубинные выпуски применяют при сбросе сточных вод в озера, водохранилища, моря.
Выпуск представляет собой стальную перфорированную трубу с металлической обоймой со щелями. Обойма заполнена гравием или щебнем. Площадь щелевых отверстий решетчатого дна обоймы составляет 40-50 % его площади. Выход воды в виде вертикальных струй обеспечивает эффективное смешение с водой водоема.
Республиканским НИИ экологических исследований была составлена программа и начаты практические исследования по применению эйхорнии для глубокой очистки сточных вод.
Из литературных источников мы узнали, что эйхорния в естественных условиях произрастает в странах с тропическим климатом, то есть при температуре 16-32°С. Поэтому нам было интересно узнать, как она перенесет зиму в климатических условиях ПМР.
Для этой цели одна часть растений была помещена на вторичном отстойнике Тираспольских очистных сооружений МУП ТУВКХ г. Тирасполя. В ходе наблюдений было установлено, что растения не только успешно перезимовали, но и не прекратили своего вегетативного размножения. Заложили 200 дочерних растений, на 25 февраля растений было уже 400 штук, на 22 марта – 600 штук крупных особей.
Другая часть крупных растений, где осенью наблюдалось активное цветение и семяобразование была оставлена в открытой емкости. При понижении температуры атмосферного воздуха до -3°С все растения погибли.
Третью часть растений поместили в ваннах в лаборатории. Для эйхорнии необходимо яркое освещение (световой день должен быть продлен до 12 часов). Растение сохранилось, но такое сохранение растений экономически нецелесообразно.
За последние 10-летия исследователи, заинтересовавшиеся эйхорнией отмечали у этой древней представительницы высшей водной растительности (ВВР) совершенно неуемный аппетит и полное равнодушие к меню, просто маниакальная прожорливость: прекрасный реликт съедает любой загрязнитель. Появились данные, что эйхорнии под силу конкурировать с современными инженерными сооружениями по очистке сточных вод.
В связи с этим возникла актуальная возможность использования водного гиацинта для доочистки сточных вод различных хозяйственных объектов в ПМР.
А. Условия и методы проводимых исследований на Тираспольских очистных сооружениях
С целью постановки экспериментов по очистке сточных вод, растения эйхорнии были перевезены из прудов г. Краснодара на очистные сооружения МУП ТУВКХ г. Тирасполя, где проводились исследования.
Исследования проводились в 2 этапа:
1 этап: с августа по сентябрь 2002 года;
2 этап: с марта по апрель 2003 года.
Отбор проб проводился ежедневно.
В целях определения эффективности очистки эйхорнией сточных вод различной степени загрязненности было рассажено по 50 растений в емкости с сточной водой с различным содержанием химических компонентов:
1. В сточные воды поступающие на очистные сооружения;
2. В сточные воды после механической очистки (первичные отстойники);
3. В сточные воды после биологической очистки (вторичные отстойники);
4. В избыточный активный ил и в сооружения с сырым осадком.
Наиболее важным этапом очистки сточных вод является аэрация кислородом воздуха и биологическая доочистка воды микроорганизмами активного ила. Эта стадия очистки требует наибольших финансовых и энергетических вложений. Наши исследования показали целесообразность применения водного гиацинта именно на этом этапе.
Поэтому для повторных экспериментов в 2003 году была использована вода идущая а аэротенк, то есть после механической очистки.
Эффективность очистки сточной воды определялась по предложенной нами формуле:
,где с1 – концентрация данного компонента до очистки; с2 – концентрация после очистки и выражалась в процентах.
Б. Результаты исследований и их обсуждение
Поставленный нами эксперимент по очистке сточных вод на базе очистных сооружений МУП УВКХ г. Тирасполя показал, что после очистки сточных вод эйхорнией, содержание в воде ингредиентов, по которым проводился анализ значительно уменьшилось. При наличии оптимальной температуры воды и воздуха были получены следующие показатели:
Таблица 1. Эффективность очистки сточной воды эйхорнией.
Контролируемый показатель | I этап. август-сентябрь 2002 г. | Эффективность отчистки, % | II этап. март-апрель 2003 г. | Эффективность отчистки, % | ||
на день отбора | после 10 дней очистки | на день отбора | после 10 дней очистки | |||
ХПК, М2О2/л | 50,3 | 10,0 | 80 | 53,4 | 18,0 | 66,0 |
БПК, М2О2/л | 13,7 | 6,4 | 53 | 14,0 | 8,1 | 42 |
Щелочность, мг-экв/л | 2,4 | 2,0 | 16 | 2,5 | 2,1 | 16 |
Жесткость, мг-экв/л | 1,6 | 1,0 | 37,5 | 2,0 | 1,5 | 25 |
Хлориды, мг/л | 37,9 | 14,5 | 62 | 37,0 | 16,4 | 56 |
Сульфаты, мг/л | 98,0 | 42,1 | 57 | 98,0 | 49,1 | 50 |
Фосфаты, мг/л | 1,4 | 0,3 | 79 | 1,4 | 1,0 | 28 |
Нитраты, мг/л | 6,2 | 0,25 | 96 | 6,4 | 1,2 | 81 |
Аммонийный азот, мг/л | 6,9 | 0,94 | 86 | 6,9 | 1,4 | 80 |
Общее микробное число | 2,310 | 0,410 | 83 | 2,410 | 0,410 | 83 |
Coli - индекс | 1563,0 | 420,0 | 73 | 1450,0 | 580,0 | 60 |
Результаты очистки воды было видно «невооруженным глазом»: вода стала прозрачной, специфический запах нечистот исчез. Причем эффективность очистки выше, чем при использовании обычных технологий.