Смекни!
smekni.com

Клетка (стр. 4 из 8)

Митохондрия – это органоид клетки, в котором вырабатывается основная масса энергии клетки, сконцентрированная в АТФ и используемая затем в разнообразных процессах синтеза и во всех видах клеточной деятельности (движение, дыхание, рост, продукция секретов и т. д.).

В последние годы были получены убедительные данные о том, что в митохондриях происходит синтез белка, который осуществляется в рибосомах, располагающихся в матриксе митохондрий. Есть также указания на синтез жирных кислот и некоторых других веществ в митохондриях. Из этого следует, что митохондрии представляют не только энергетические центры, но и важное место биосинтетических процессов в клетке наряду с ядром и рибосомами цитоплазмы.

Пластиды. Пластиды – особые органоиды растительных клеток, в которых осуществляется синтез различных веществ, и в первую очередь фотосинтез.

В цитоплазме клеток высших растений имеется три основных типа пластид: 1) зеленые пластиды – хлоропласты; 2) окрашенные в красный, оранжевый и другие цвета хромопласты; 3) бесцветные пластиды – лейкопласты. Все эти типы пластид могут переходить один в другой. У низших растений, например у водорослей, известен один тип пластид – хроматофоры. Процесс фотосинтеза у высших растений протекает в хлоропластах, которые, как правило, развиваются только на свету.

Снаружи хлоропласты ограничены двумя мембранами: наружной и внутренней. В состав хлоропластов высших растений, по данным электронной микроскопии, входит большое количество гран, расположенных группами. Каждая грана состоит из многочисленных круглых пластин, имеющих форму плоских мешочков, образованных двойной мембраной и сложенных друг с другом наподобие столбика монет. Граны соединяются между собой посредством особых пластин или трубочек, расположенных в строме хлоропласта и образующих единую систему. Зеленый пигмент хлоропластов содержат только граны; строма их бесцветна.

Хлоропласты одних растений содержат лишь несколько гран, других – до пятидесяти и больше.

У зеленых водорослей процессы фотосинтеза осуществляются в хроматофорах, которые не содержат гран, и продукты первичного синтеза – различные углеводы – часто откладываются вокруг особых клеточных структур, называемых пиреноидами.

Окраска хлоропластов зависит не только от хлорофилла, в них могут содержаться и другие пигменты, например каротин и каротиноиды, окрашенные в разные цвета – от желтого до красного и коричневого, а также фикобилины. К последним относится фикоцианин и фикоэритрин красных и сине-зеленых водорослей.

Хромопласты обычно окрашены в желтый, оранжевый, красный или бурый цвета. Сочетание хромопластов, содержащих разные пигменты, создает большое разнообразие окрасок цветков и плодов растений.

Следующий тип пластид – лейкопласты. Они бесцветны. Местом их локализации служат неокрашенные части растений. Примером лейкопластов могут служить так называемые амилопласты клубней картофеля и многих других растений. В амилопластах происходит вторичный синтез вторичного крахмала из моно- и дисахаридов. Следовательно, основная функция пластид – это синтез моно-, ди- и полисахаридов, но теперь они известны и как органоиды, в которых синтезируются белки.

Пластиды развиваются из особых клеточных структур, носящих название пропластид. Пропластиды – это бесцветные образования, внешне похожие на митохондрии, но отличающиеся от них более крупными размерами и тем, что всегда имеют удлиненную форму. Снаружи пластиды ограничены двойной мембраной, небольшое количество мембран находится также в их внутренней части.

Пластиды размножаются путем деления, и контроль над этим процессом осуществляется, по-видимому, ДНК, содержащейся в них же. При делении происходит перетяжка пластиды, но разделение пластид может происходить и путем образования перегородки. Способность пластид к делению обеспечивает их непрерывность в ряду клеточных поколений. При половом и бесполом размножении растений происходит передача пластид дочерним организмам, причем у большинства растений пластиды передаются по материнской линии.

Комплекс Гольджи. Комплекс Гольджи – это органоид клетки, получивший свое название по имени ученого К. Гольджи, который впервые увидел его в цитоплазме нейронов и назвал сетчатым аппаратом (1898). Во многих клетках этот органоид действительно имеет форму сложной сети, расположенной вокруг ядра. Иногда же его сетевидная структура приобретает вид шапочки, расположенной над ядром, или тяжа, опоясывающего ядро. В клетках многих беспозвоночных животных и растений комплекс Гольджи представлен в виде отдельных элементов, обладающих формой округлых, серповидных или палочковидных телец, носящих название диктиосом. Такая рассеянная форма аппарата Гольджи свойственна и некоторым клеткам позвоночных животных.

Исследование многочисленных клеток животных и растений с помощью электронного микроскопа показало, что, несмотря на многообразие формы и строения комплекса Гольджи, структура его элементов однотипна в разных клетках. По данным электронномикроскопического исследования, ультраструктура комплекса Гольджи включает три основных компонента.

1. Система плоских цистерн, ограниченных гладкими мембранами. Цистерны расположены пачками, по 5 – 8; причем они плотно прилегают друг к другу. Количество цистерн, их величина и расстояние между ними варьируют в разных клетках.

2. Система трубочек, которые отходят от цистерн. Трубочки анастомозируют друг с другом и образуют довольно сложную сеть, окружающую цистерны.

3. Крупные и мелкие пузырьки, замыкающие концевые отделы трубочек.

Все три компонента аппарата Гольджи взаимосвязаны друг с другом и могут возникать друг из друга.

Согласно электронномикроскопическим данным, мембранам всех трех компонентов свойственно такое же трехслойное строение, как и наружной цитоплазматической мембране и мембранам эндоплазматической сети.

В состав мембран аппарата Гольджи входят липиды, или, точнее, фосфолипиды и белки. Следовательно, в мембранах его содержится тот же белково-липидный комплекс, что и в мембранах других клеточных органоидов. В элементах комплекса Гольджи обнаружены ферменты и среди них ферменты, связанные с синтезом полисахаридов и липидов.

Структуры аппарата Гольджи накапливают либо уже готовые, либо почти готовые продукты деятельности клеток.

Формирование и накапливание секреторных гранул – это основная, очень важная, но не единственная функция аппарата Гольджи.

При делении клеток часть аппарата Гольджи из материнской клетки передается в дочернюю. Этот клеточный органоид представляет поэтому преемственную структуру, и при делении обычно материал его распределяется поровну между материнской и дочерней клетками. Возможность образования аппарата Гольджи заново не доказана.

Лизосомы. Лизосомы были открыты в 1955 году при исследовании клеток печени крысы биохимическими методами. Открытие лизосом связано с работами Де-Дюва.

Лизосомы представляют собой небольшие округлые частицы, располагающиеся в цитоплазме. Каждая лизосома ограничена плотной мембраной, внутри которой заключено свыше 12 гидролитических ферментов, имеющих наибольшую активность в кислой среде. Мембрана лизосомы имеет типичное трехслойное строение. Ферменты, содержащиеся в лизосомах, способны расщеплять важные в биологическом отношении соединения, т. е. белки, нуклеиновые кислоты, полисахариды. Эти вещества поступают в клетку в качестве пищи путем фагоцитоза и пиноцитоза, и лизосомы принимают активное участие в их расщеплении, или лизисе. Отсюда происходит и название самого органоида (греч. lysis – растворение и soma – тело). Совокупность лизосом можно назвать "пищеварительной системой" клетки, так как они участвуют в переваривании всех веществ, поступающих в клетку.

Кроме того, за счет ферментов лизосом могут перевариваться при отмирании отдельные структуры клетки, а также целые отмершие клетки, что обычно наблюдается в процессе жизнедеятельности любого многоклеточного организма. Ферменты лизосом способны переваривать и саму клетку, в которой они находятся, но предполагают, что клетку от "самопереваривания" предохраняет та мембрана, которая ограничивает каждую лизосому. Нарушение целостности мембраны лизосом приводит к повреждениям окружающей цитоплазмы и клеточных органоидов. Лизосомы обнаружены в клетках многих органов многоклеточных животных, у простейших, а в последнее время и в клетках растений. Лизосомы сейчас детально исследуются.

Клеточный центр. Клеточный центр – органоид, обнаруженный во всех клетках многоклеточных животных, простейших и в клетках некоторых растений. В состав клеточного центра входит 1 – 2 или иногда большее количество мелких гранул, называемых центриолями. Центриоли либо непосредственно расположены в цитоплазме, либо лежат в центре сферического слоя цитоплазмы, который называется центросомой или центросферой.

Центриоли – это плотные тельца. Центриоли имеют относительно постоянное место расположения в клетке: они занимают геометрический центр ее, но иногда в процессе развития могут перемещаться ближе к периферическим участкам. У многих видов простейших и в половых клетках некоторых многоклеточных организмов центриоли расположены не в цитоплазме, а в ядре, под его оболочкой.

Клеточный центр играет важную роль в процессах деления клетки.

Известно, что в центриолях содержатся углеводы, белки и совсем незначительное количество липидов, а также очень немного РНК и ДНК.

В объяснении процессов репродукции центриолей до сих пор имеется много дискуссионных вопросов, но сейчас уже определенно показано, что репродукция этих структур происходит путем почкования. От уже имеющейся в клетке родительской центриоли начинает расти маленький зачаток, представляющий собой дочернюю центриоль. Зачаток увеличивается в размерах и, вырастая, превращается в точно такую же центриоль, как родительская. Затем эта дочерняя центриоль отделяется от родительской. Такой путь формирования новой центриоли был детально изучен у простейших (жгутиконосцев). С помощью электронномикроскопических исследований Д. Мэзия (1961) и его сотрудники выяснили, что такой же способ репродукции центриолей путем почкования свойственен и клеткам позвоночных животных.