Смекни!
smekni.com

Биотехнология (стр. 7 из 9)

В настоящее время a-, b- и g-интерфероны успешно получают с применением генноинженерных штаммов Е. coli, дрожжей, куль­тивируемых клеток насекомых (Drosophila) и млекопитающих. Генно-инженерные интерфероны могут быть очищены с использо­ванием моноклональных антител. В случае у- и р-интерферонов предпочтительно применение эукариотических продуцентов, так как прокариоты не гликозилируют белки. Некоторые фирмы, на­пример Bioferon (ФРГ), используют не генноинженерные мутан­ты, а культивируемые in vitro фибропласты человека.

Интерфероны используются для лечения болезней, вызывае­мых вирусами герпеса, бешенства, гепатитов, цитомегаловиру-сом, вирусом, вызывающим опасное поражение сердца, а также для профилактики вирусных инфекций. Вдыхание аэрозоля ин­терферонов позволяет предупредить развитие острых респиратор­ных заболеваний. Несколько курьезной проблемой является то что интерфероны, в частности a-интерфероны, сами могут вызывать у пациентов простудные симптомы (насморк, повышение температуры и т.д.). Проблема побочного действия стоит особенно остро при длительном терапевтическом применении интерферонов, необходимом для лечения злокаче­ственных опухолей.

Интерфероны оказывают лечебное воздействие на организм больных раком груди, кожи, гортани, легких, мозга, рассеянной миеломе и саркоме Капоци — два последних заболевания харак­терны для лиц, страдающих приобретенными иммунодефицитами (см. ниже). Интерфероны полезны также при лечении рассеян­ного склероза.

Методы генетической инженерии позволяют получать модифи­цированные Интерфероны. Антивирусная активность интерферо­нов варьирует при аминокислотных заменах (J. Werenne, 1983). Американская компания Cetus Corporation производит b-интер-ферон, в аминокислотной последовательности которого цистеин в положении 17 замещен на серии. Это приводит к повышению терапевтической активности препарата, так как предотвращает наблюдаемое in vitro формирование неактивного димера b-интер-ферона за счет дисульфидных связей между остатками цистеина в положении 17. Определенные надежды возлагают на модифи­кацию интерферонов путем получения гибридных молекул (Е. Д. Свердлов, 1984).

Интерлейкины—сравнительно короткие (около 150 амино­кислотных остатков) полипептиды, участвующие в организации иммунного ответа. Интерлейкин-1, образующийся опре­деленной группой лейкоцитов крови — макрофагами, в ответ на введение антигена стимулирует размножение (пролиферацию) Т-хелперов (субпопуляции Т-лимфоцитов), продуцирующих, в свою очередь, интерлейкин-2. Последний вызывает пролифера­цию различных субпопуляций Т-лимфоцитов — Т-киллеров, Т-хелперов, Т-супрессоров, а также В-лимфоцитов, продуцентов антител. Под влиянием интерлейкина-2 из Т-лимфоцитов высво­бождаются регуляторные белки — лимфокины, активирующие звенья иммунной системы; синтезируются также Интерфероны.

Интерлейкины, основные лечебные средства при иммунных расстройствах, получают путем клонирования соответствующих генов в Е. coll или культивирования лимфоцитов in vitro. Англий­ская компания Celltech Ltd и японская Sakyo Company предла­гают синтезированный генноинженерными бактериями интерлей-кин-1 наряду с другим тюлипептидным агентом —фактором нек­роза опухолей -- для лечения ряда опухолевых заболеваний (В. Sikyta el al., 1986).

Получаемые биотехнологическим путем факторы свертывания крови, особенно фактор VIII (с помощью культивируемых кле­ток млекопитающих) и фактор IX (с помощью генноинженер-ного штамма Е. coli), необходимы для терапии форм гемофи­лии наследственной болезни, при которой кровь теряет способность свертываться. К числу ценных с клинической точки зрения факторов, полученных в биореакторах с культурами животных клеток, следует отнести фактор роста В-лимфоцитов, фактор активации макрофагов, Т-заместительный фактор, активатор тканевого плазминогена.

Моноклокальные антитела и ДНК-или РНК-пробы.

Моноклональные антитела — продукты В-гибридомных клеток — используют для диагностики различных заболеваний. Об­ладая высокой специфичностью действия, они обеспечивают иден­тификацию не только вида возбудителя, но и его серотипа. С по­мощью моноклональных антител можно тестировать различные гормоны, метаболиты, белковые факторы. Наиболее быстрый ме­тод индикации основан на применении антител, иммобилизован­ных на мембранных электродах — аналогах ферментных биосен­соров. Они позволяют диагностировать беременность, выявлять предрасположенность к диабету, ревматоидному артриту (J. Col-lins et al., 1986), идентифицировать наследственные заболе­вания, сопровождающиеся утратой тех или иных ферментов и других белковых компонентов. Моноклональные антитела широко используют для диагностики рака и определения его форм.

Трудности связаны с тем, что специфических «раковых» анти­генов, по-видимому, не бывает, и характерные для злокачествен­но переродившейся клетки детерминанты могут быть с некоторой, пусть небольшой, вероятностью обнаружены и в здоровых клет­ках. Перспективна диагностика рака при помощи моноклональ-ных антител к вырабатываемым злокачественной опухолью осо­бым гормонам, аутокринам, ведущим к самостимуляции роста раковых клеток.

Моноклональные антитела имеют не только диагностическое, но и лечебное значение. При аутоиммунных заболеваниях, когда иммунные клетки «ополчаются» против собственных органов и тканей, моноклональные антитела соответствующей специфич­ности могут связывать антитела, наносящие вред организму больного. Для лечения рака предлагают использовать монокло­нальные антитела, конъюгированные с токсичными для раковых клеток соединениями. Моноклональные антитела доставляют яд точно по адресу, избегая поражения здоровых клеток. Поэтому к моноклональным антителам можно присоединять очень сильные токсины, например рицин — яд из клещевины, одной молекулы которого достаточно для поражения одной клетки. В современ­ной фармацевтической промышленности моноклональные анти­тела используют для очистки лекарственных препаратов.

Диагностическое значение имеют короткие фрагменты ДНК и РНК, несущие радиоактивную или иную метку, так называемые ДНК/РНК-пробы. С их помощью можно установить наличие в организме определенных типов нуклеиновых кислот, соответ­ствующих болезнетворным агентам, злокачественным опухолям, а также проверить геном пациента на наличие у него тех или иных генетических аномалий. Метод основан на комплементар­ном взаимодействии проб с участками ДНК или РНК, выделен­ными из исследуемых клеток и фиксированными на носителе. Взаимодействия нуклеотидных цепочек пробы с ДНК (РНК) из образца регистрируют по радиоактивной метке или иным спо­собом.

Моноклональные антитела и ДНК/РНК-пробы используют для диагностики болезней животных и растений. В частности, с помощью этих проб проводят индикацию зараженности кар­тофеля вирусом. Диагностические средства из арсенала биотех­нологов предлагают применять для быстрого определения пола у цыплят.

Рекомбинантные вакцины и вакцины-антигены.

Вакцина­ция — один из основных способов борьбы с инфекционными забо­леваниями. Путем поголовной вакцинации ликвидирована нату­ральная оспа, резко ограничено распространение бешенства, по­лиомиелита, желтой лихорадки. На повестке дня — изготовление вакцин против гриппа, гепатитов, герпесов, свинки, кори, острых респираторных заболеваний. Большое экономическое значение имеет разработка вакцин против болезней сельскохозяйственных животных — ящура, африканской болезни лошадей, овечьей бо-

лезни «синего языка», трипаносомозов и др. Традиционные вакцин­ные препараты изготовляют на основе ослабленных, инактивиро-ванных или дезинтегрированных возбудителей болезней.

Современные биотехнологические разработки предусматрива­ют создание рекомбинантных вакцин и вакцин-антигенов. Вак­цины обоих типов основаны на генноинженерном подходе.

Для получения рекомбинантных вакцин обычно используют хорошо известный вирус коровьей оспы (осповакцины). В его ДНК встраивают чужеродные гены, кодирующие иммуногенные белки различных возбудителей (гемагглютинин вируса гриппа, гликопротеин D вируса герпеса, поверхностный антиген вируса гепатита В, антиген малярийного плазмодия). Получаются вак­цины против соответствующих инфекций, хорошо зарекомендо­вавшие себя в опытах на животных. К их достоинствам относится возможность создания поливалент­ных вакцинных препаратов на основе объединения участков ДНК различных патогенов «под эгидой» ДНК вируса осповакцины. Открывается возможность одномоментной комплексной иммуни­зации, скажем, крупного рогатого скота против всех опасных инфекций данной местности.

Вакцины-антигены получают, клонируя гены возбудителя бо­лезни в Е. colt, дрожжах, клетках насекомых и млекопитающих. Клонирован ген поверхностного антигена HBS-вируса гепатита В (сывороточного гепатита), ген белка оболочки УРЬвируса ящура. Вирус ящура существует в виде многих серотипов, методом белковой инженерии удалось скомбини­ровать иммуногенные компоненты различных серотипов в рамках одной вакцины-антигена.

Вакцины-антигены высокостабильны при хранении и перевоз­ке, сравнительно просты в изготовлении (в том числе и при крупномасштабном производстве), содержат минимальное коли­чество белка и поэтому малоопасны как аллергены. Они гаран­тированы от остаточной инфекционности — способности вызы­вать инфекционную болезнь вместо того, чтобы предохранять от нее. Проблемой является низкая иммуногенность вакцин-антигенов. Одной из причин может быть то, что вакцина не включает всех компонентов возбудителя, необходимых для созда­ния иммунитета к нему. Так, вирус, покидая клетку, часто «одевается» ее мембраной. Компоненты этой мембраны, отсут­ствующие в генноинженерном белке, могут обладать иммуноген-ными свойствами. К повышению иммуногенности вакцин-анти­генов ведет добавление адьювантов, иммобилизация вакцин на носителях или их включение в липосомы.