Смекни!
smekni.com

Биотехнология (стр. 3 из 9)

Таким образом, биотехнология открывает широкие перспективы в области выведения новых сортов растений, устойчивых к неблагоприятным внешним воздействиям, вредителям, патогенам, не требующих азотных удобрений, отличающихся высокой продуктивностью.

Таблица 1. Примеры клеточных культур — высокоэффективных проду­центов ценных соединений (по О. Sahai, M. Knuth, 1985. К. Hahlbrock. 1986)

Вид растения Целевой продукт Предполагаемое применение
Lithospermum erithrorhizon (воробейник) Шиконин и его производные Красный пигмент, используемый в косметике как «биологическая губная помада», антибактериаль­ный агент, используемый при ле­чении ран, ожогов, геморроя
Nicotiana tabacum (та­бак) Убихинон- 10 Важный компонент дыхательной и фотосинтетической цепей пере­носа электронов, применяемый как витамин и в аналитических целях
To же Глутатион Участник многих окислительно-восстановительных реакций в клет­ке, приравнивается к витамину
Morinda citrifolia Антрахиноны Сырье для лакокрасочной про­мышленности
Coleus blumei Розмариновая кислота Жаропонижающее средство, проходящее клинические испытания
Berberis stolonifera (барбарис) Ятрорризин Спазмолитическое лекарственное средство

Биодеградация пестицидов. Пестициды облада­ют мощным, но недостаточно избирательным действием. Так, гербициды, смываясь дождевыми потоками или почвенными во­дами на посевные площади, наносят ущерб сельскохозяйствен­ным культурам. Помимо этого, некоторые пестициды длительно сохраняются в почве, что тоже приводит к потерям урожая. Воз­можны разные подходы к решению проблемы: 1) усовершенство­вание технологии применения пестицидов, что не входит в ком­петенцию биотехнологии; 2) выведение растений, устойчивых к пестицидам; биодеградация пестицидов в почве.

К разрушению многих пестицидов способна микрофлора поч­вы. Методами генетической инженерии сконструированы штаммы микроорганизмов с повышенной эффективностью биодеградации ядохимикатов, в частности штамм Pseudomonas ceparia, разру­шающий 2, 4, 5-трихлорфеноксиацетат. Устойчивость того или иного пестицида в почве меняется при добавлении его в сочета­нии с другим пестицидом. Так, устойчивость гербицида хлорпро-фама увеличивается при его внесении совместно с инсектицидами из группы метилкарбаматов. Оказалось, что метилкарбаматы ингибируют микробные ферменты, катализирующие гидролиз хлорпрофама.

Микробная трансформация пестицидов имеет и оборотную сторону. Во-первых, быстрая деградация пестицидов сводит на нет их полезный эффект. Во-вторых, в результате микробного превращения могут образоваться продукты, сильно ядовитые для растений. При использовании гербицида тиобенкарба в Япо­нии наблюдали подавление роста и развития риса. Установлено, что подавляет не сам гербицид, а его дехлорированное производ­ное S-бензил-N,N-диэтилтиокарбамат. Чтобы предотвратить об­разование такого производного, тиобенкарб применяют в ком­бинации с метоксифеном, ингибитором дехлорирующего фермен­та микроорганизмов.

Биологическая защита растений от вреди­телей и патогенов. Из широкого спектра биологических средств защиты растений ограничимся рассмотрением средств борьбы с насекомыми-вредителями и патогенными микроорга­низмами. Именно в этих областях имеются наибольшие перспек­тивы.

К традиционным биологическим средствам, направленным против насекомых, принадлежат хищные насекомые. В последние годы арсенал «оружия» инсектицидного действия пополнен гриба­ми, бактериями, вирусами, патогенными для насекомых (энтомо-патогенными). Многие виды насекомых-вредителей (тля, коло­радский жук, яблоневая плодожорка, озимая совка и др.) восприимчивы к заболеванию, вызываемому грибом Beauveria bussiana. Препарат боверин из лиофильно высушенных конидий гри­ба сохраняет энтомопатогенность в течение года после обработки почвы или растений. Препарат пецилолин из гриба Poecilomyces fumoso-roseus применяют для борьбы с вредителями кустарни­ков, например смородины.

Важным источником бактериальных энтомопатогенных препа­ратов служит Bacillus thuringiensis. Эти препараты обладают высокой устойчивостью и патогенны для нескольких сотен видов насекомых-вредителей, в том числе для листогрызущих насеко­мых — вредителей яблонь, винограда, капусты, лесных деревьев. Гены, отвечающие за синтез одного из токсинов В. thuringiensis, были изолированы и перенесены в растения табака. Необходимо, чтобы такие «энтомопатогенные» растения не содержали веществ, токсичных для человека и животных.

Вирусные препараты отличаются высокой специфичностью действия, длительным (до 10—15 лет) сохранением активности, устойчивостью к колебаниям температуры и влажности. Из многих сотен известных энтомопатогенных вирусов наибольшее примене­ние находят вирусы ядерного полиэдроза, обладающие высокой эффективностью действия на насекомых-вредителей. Насекомых выращивают в искусственных условиях, заражают вирусом, из гомогенатов погибших насекомых готовят препараты. При­меняют отечественные препараты вирин-ЭКС (против капустной совки), вирин-ЭНШ (против непарного шелкопряда). В послед­ние годы для культивирования вирусов широко применяю; культуры клеток насекомых.

Комбинация из нескольких биологических средств нередко действует на вредителей более эффективно, чем каждый в от дельности. Смертность соснового шелкопряда резко возрастает, если вирус цитоплазматического полиэдроза применяют в сочета­нии с препаратами из Вас. thuringiensis. Эффективна комбинация биологических и химических средств защиты растений от насекомых.

Среди новых средств защиты растений — вещества биогенного происхождения, ингибирующие откладку яиц насекомыми или стимулирующие активность естественных врагов насекомых вредителей: хищников, паразитов .

Разнообразны средства защиты растений от фитопатогенных микроорганизмов.

1. Антибиотики. Примерами могут служить триходермин и трихотецин, продуцируемые грибами Trichoderma sp. и Trichotecium roseum. Эти антибиотики используются для борьбы с корневыми гнилями овощных, зерновых и технических культур.

2. Фитоалексины, естественные растительные агенты, инактивирующие микробных возбудителей заболеваний. Эти соединения, синтезируемые в тканях растений в ответ на внедрение фитопатогенов, могут служить высокоспецифичными замените-

лями пестицидов. Фитоалексин перца успешно применяли при фитофторозе. Могут быть использованы также вещества, сти­мулирующие синтез фитоалексинов в растительных тканях.

3. Использование микробов-антагонистов, вытесняющих пато­генный вид и подавляющих его развитие.

4. Иммунизация и вакцинация растений. Вакцинные препара­ты стремятся вводить непосредственно в прорастающие семена.

5. Введение в ткани растений специфичного агента (d-фактора), снижающего жизнеспособность возбудителя.

Биологические средства — важная составная часть комплекс­ной программы защиты растений. Эта программа предусматри­вает проведение защитных мероприятий агротехнического, биоло­гического и химического плана наряду с использованием устой­чивых сортов растений. Задачей комплексной программы явля­ется поддержание численности вредителей растений на экологи­чески сбалансированном уровне, не наносящем ощутимого вреда культурным растениям.

Биологические удобрения. Биологические (бакте­риальные) удобрения применяют для обогащения почвы связан­ным азотом. Большое распространение получили препараты нитрагин и азотобактерин — клетки клубеньковых бактерий и азотобактера, к которым добавляют стабилизаторы (мелассу, тиомочевину) и наполнитель (бентонит, почву). Азотобактерин обогащает почву не только азотом, но и витаминами и фитогормонами, гиббереллинами и гетероауксинами. Препарат фосфо-бактерин из Bacillus megaterium превращает сложные органиче­ские соединения фосфора в простые, легко усвояемые расте­ниями. Фосфобактерин также обогащает почву витаминами и улучшает азотное питание растений.

Растения синтезируют ряд соединений, регулирующих их рост и развитие (фитогормоны, биорегуляторы). К их числу принадле­жат ауксины, гиббереллины, цитокинины. Созревание плодов стимулирует этилен. Эти биорегуляторы находят применение в сельском хозяйстве. К числу новых, обнаруженных в послед­ние годы биорегуляторов относят пептиды, имеются перспек­тивы их применения в сельском хозяйстве.

Биотехнология и животноводство.

Большое значение в связи с интенсификацией животноводства отводится профилактике инфекционных заболеваний сельскохозяйственных животных с применением рекомбинантных живых вакцин и генноинженерных вакцин-антигенов, ранней диагностике этих заболеваний с по­мощью моноклональных антител и ДНК/РНК-проб.

Для повышения продуктивности животных нужен полноцен­ный корм. Микробиологическая промышленность выпускает кор­мовой белок на базе различных микроорганизмов — бактерий,

грибов, дрожжей, водорослей. Богатая белками биомасса одно­клеточных организмов с высокой эффективностью усваивается сельскохозяйственными животными. Так, 1 т кормовых дрожжей позволяет получить 0,4- 0,6 т свинины, до 1,5 т мяса птиц, 25—30 тыс. яиц и сэкономить 5—7 т зерна (Р. С. Рычков, 1982). Это имеет большое народнохозяйственное значение, поскольку 80% площадей сельскохозяйственных угодий в мире отводятся для производства корма скоту и птице.