Смекни!
smekni.com

Кислотно-основные буферные системы и растворы (стр. 1 из 3)

Буферными называют растворы, рН которых практически на изменяется от добавления к ним небольших количеств сильной кислоты или щелочи, а также при разведении. Простейший буферный раствор – это смесь слабой кислоты и соли, имеющей с этой кислотой общий анион (например, смесь уксусной кислоты СН3СООН и ацетата натрия СН3СООNa), либо смесь слабого основания и соли, имеющей с этим основанием общий катион (например, смесь гидроксида аммония NH4OH с хлоридом аммония NH4Cl).

С точки зрения протонной теории1 буферное действие растворов обусловлено наличием кислотно-основного равновесия общего типа:

Воснование + Н+Û ВН+сопряженная кислота

НАкислота Û Н+ + А-сопряженное основание

Сопряженные кислотно-основные пары В /ВН+ и А- /НА называют буферными системами.

Буферные растворы играют большую роль в жизнедеятельности. К числу исключительных свойств живых организмов относится их способность поддерживать постоянство рН биологических жидкостей, тканей и органов – кислотно-основной гомеостаз. Это постоянство обусловлено наличием нескольких буферных систем, входящих в состав этих тканей.

Классификация кислотно-основных буферных систем. Буферные системы могут быть четырех типов:

Слабая кислота и ее анион А- /НА:

ацетатная буферная система СН3СОО-/СН3СООН в растворе СН3СООNa и СН3СООН, область действия рН 3, 8 – 5, 8.

Водород-карбонатная система НСО3-2СО3 в растворе NaНСО3 и Н2СО3, область её действия – рН 5, 4 – 7, 4.

Слабое основание и его катион В/ВН+:

аммиачная буферная система NH3/NH4+ в растворе NH3 и NH4Cl,

область ее действия – рН 8, 2 – 10, 2.

Анионы кислой и средней соли или двух кислых солей:

карбонатная буферная система СО32- /НСО3- в растворе Na2CO3 и NaHCO3,область ее действия рН 9, 3 – 11, 3.

фосфатная буферная система НРО42-2РО4- в растворе Nа2НРО4 и NаН2РО4, область ее действия рН 6, 2 – 8, 2.

Эти солевые буферные системы можно отнести к 1-му типу, т. к. одна из солей этих буферных систем выполняет функцию слабой кислоты. Так, в фосфатной буферной системе анион Н2РО4- является слабой кислотой.

4. Ионы и молекулы амфолитов. К ним относят аминокислотные и белковые буферные системы. Если аминокислоты или белки находятся в изоэлектрическом состоянии (суммарный заряд молекулы равен нулю), то растворы этих соединений не являются буферными. Они начинают проявлять буферное действие, когда к ним добавляют некоторое количество кислоты или щелочи. Тогда часть белка (аминокислоты) переходит из ИЭС в форму “белок-кислота” или соответственно в форму “белок-основание”. При этом образуется смесь двух форм белка: (R – макромолекулярный остаток белка)

а) слабая “белок-кислота” + соль этой слабой кислоты:

СОО- СООН

R – СН + Н+ ÛR – СН

N+Н3 N+Н3

основание А- сопряженная кислота НА

(соль белка-килоты) (белок-кислота)

б) слабое “белок-основание” + соль этого слабого основания:

СОО- СОО-

R – СН + ОН- ÛR – СН + Н2О

N+Н3 2

кислота ВН+ сопряженное основание В

(соль белка-основания) (белок-основание)

Таким образом, и этот тип буферных систем может быть отнесен соответственно к буферным системам 1-го и 2-го типов.

Механизм буферного действия можно понять на примере ацетатной буферной системы СН3СОО-/СН3СООН, в основе действия которой лежит кислотно-основное равновесие:

СН3СООН Û СН3СОО- + Н+;(рКа = 4, 8)

Главный источник ацетат-ионов – сильный электролит СН3СООNa:

СН3СООNa® СН3СОО- + Na+

При добавлении сильной кислоты сопряженное основание СН3СОО- связывает добавочные ионы Н+, превращаясь в слабую уксусную кислоту:

СН3СОО- + Н+ÛСН3СООН

(кислотно-основное равновесие смещается влево, по Ле Шателье)

Уменьшение концентрации анионов СН3СОО- точно уравновешивается повышение концентрации молекул СН3СООН. В результате происходит небольшое изменение в соотношении концентраций слабой кислоты и ее соли, а следовательно, и незначительно изменяется рН.

При добавлении щелочи протоны уксусной кислоты (резервная кислотность) высвобождаются и нейтрализуются добавочные ионы ОН-, связывая их в молекулы воды:

СН3СООН + ОН-Û СН3СОО- + Н2О

(кислотно-основное равновесие смещается вправо, по Ле Шателье)

В этом случае также происходит небольшое изменение в соотношении концентраций слабой кислоты и ее соли, а следовательно, и незначительное изменение рН. Уменьшение концентрации слабой кислоты СН3СООН точно уравновешивается повышение концентрации анионов СН3СОО-.

Аналогичен механизм действия и других буферных систем. Например, для белкового буферного раствора, образованного кислой и солевой формами белка, при добавлении сильной кислоты ионы Н+ связываются солевой формой белка:

СОО- СООН

R – СН + Н+ ®R – СН

N+Н3 N+Н3

Количество слабой кислоты при это незначительно увеличивается, а солевой формы белка – эквивалентно уменьшается. Поэтому рН остается практически постоянным.

При добавлении щелочи к этому буферному раствору ионы Н+, связанные в "белке – кислоте", высвобождаются и нейтрализуют добавленные ионы ОН-:

СООН СОО-

R – СН + ОН- ®R – СН + Н2О

N+Н3 2

Количество солевой формы белка при этом незначительно увеличивается, а "белка – кислоты" – эквивалентно уменьшается. И поэтому рН практически не изменится.

Таким образом, рассмотренные системы показывают, что буферное действие раствора обусловлено смещением кислотно-основного равновесия за счет связывания добавляемых в раствор ионов Н+ и ОН- в результате реакции этих ионов и компонентов буферной системы с образованием малодиссоциированных продуктов.

В основе расчета рН буферных систем лежит закон действующих масс для кислотно-основного равновесия.

Для буферной системы 1-го типа, например, ацетатной, концентрацию ионов Н+ в растворе легко вычислит, исходя из константы кислотно-основного равновесия уксусной кислоты:

СН3СООН Û СН3СОО- + Н+;(рКа = 4, 8)

Ка= [ Н+][ СН3СОО-] (1)
[ СН3СООН]

Из уравнения (1) следует, что концентрация водород-ионов равна

[ Н+] = Ка [ СН3СООН ] (2)
[ СН3СОО-]

В присутствии второго компонента буферного раствора – сильного электролита СН3СООNa кислотно-основное равновесие уксусной кислоты СН3СООН сдвинуто влево (принцип Ле Шателье). Поэтому концентрация недиссоциированных молекул СН3СООН практически равна концентрации кислоты, а концентрация ионов СН3СОО- - концентрации соли. В таком случае уравнение (2) принимает следующий вид:

[ Н+] = Ка с (кислота) (3)
с (соль)

где с (кислота) и с (соль) - равновесные концентрации кислоты и соли. Отсюда получают уравнение Гендерсона–Гассельбаха для буферных систем 1-го типа:

рН = рКа + lg с (соль) (4)
с (кислота)

В общем случае уравнение Гендерсона–Гассельбаха для буферных систем 1-го типа:

рН = рКа + lg [сопряженное основание] (5)
[ кислота ]

Для буферной системы 2-го типа, например, аммиачной, концентрацию ионов Н+ в растворе можно рассчитать, исходя из константы кислотно-основного равновесия сопряженной кислоты NH4+:

NH4+Û NH3 + Н+; рКа = 9, 2;

Ка= [NH3][Н+] (6)
[NH4+]

Отсюда получают уравнение Гендерсона–Гассельбаха для буферных систем 2-го типа:

рН = рКа + lg с (основание) (7)
с (соль)

Уравнение (7) для буферных систем 2-го типа можно представит и в следующем виде:

рН = 14 - рКв - lg с (соль) (8)
с (основание)

Значения рН буферных растворов других типов также можно рассчитать по уравнениям буферного действия (4), (7), (8).

Например, для фосфатной буферной системы НРО42-2РО4-, относящейся к 3-му типу, рН можно рассчитать по уравнению (4):

рН = рКа2РО4-) + lg с (НРО42-)
с (Н2РО4-)

где рКа2РО4-) – отрицательный десятичный логарифм константы диссоциации фосфорной кислоты по второй ступени рКа2РО4- - слабая кислота);

с (НРО42-) и с (Н2РО4-) - соответственно концентрации соли и кислоты.

Уравнение Гендерсона–Гассельбаха позволяет сформулировать ряд важных выводов:

1. рН буферных растворов зависит от отрицательного действия логарифма константы диссоциации слабой кислоты рКа или основания рКв и от отношения концентраций компонентов КО-пары, но практически не зависит от разбавления раствора водой.