Смекни!
smekni.com

Докембрийские предтечи «пионеров суши» (стр. 2 из 5)

Поздневендский палеобассейн Русской плиты представляет большой интерес в связи с рассматриваемой проблемой террестризации. Он образовался в результате одной из крупнейших в истории Земли трансгрессий, которую принято связывать с повышением уровня Мирового океана после таяния ледников лапландской ледниковой эпохи. На первом этапе своего развития – в редкинской время позднего венда – это был обширный мелководный, в основном, морской бассейн, в наиболее открытоморских частях которого обитали хорошо известные мягкотелые организмы эдиакарского типа. К концу редкинского времени морской бассейн практически закончил свое существование. В котлинское время (примерно 545-555 млн. лет тому назад) на большинстве континентов накапливались либо континентальные отложения, либо мелководные строматолитовые карбонаты, либо отложения этого возраста отсутствуют. На Русской плите, располагавшейся в средних широтах с гумидным климатом, сформировалось в этот век явно низкого стояния уровня Мирового океана отделенное (полностью или существенно) море-озеро (или система морей-озер) с распресненными водами [9]. О характере солености вод этого бассейна свидетельствуют как данные литологии и геохимии, так и палеонтологические данные. Почти по всему бассейну произрастали сообщества бентосных нитчатых цианобактерий, а во многих его частях лентовидные макроскопические водоросли вендотениды. Фитопланктон был обилен, но не отличался высоким разнообразием. Животные же, судя по всему, не играли существенной роли в экосистемах: остатки эдиакарских мягкотелых организмов крайне редки, а немногочисленные следы жизнедеятельности животных не разнообразны. В отсутствии животных возросла роль организмов-деструкторов, представленных в ископаемой летописи котлинских отложений двумя группами. Во-первых, это хитридиомицеты (водные хитридиевые грибы) рода Vendomyces, обитавшие на водорослевом детрите, о чем свидетельствует характер распределения по разрезу остатков этих грибов и других групп организмов и соотношение их сохранности [10]. Вендомицесы образовывали монотаксонные заросли на детрите, вероятно, в мелководных частях бассейна в периоды приостановки осадконакопления. Во-вторых, это актиномицеты, из которых одна форма – Primoflagella [11], судя по всему, поселялась на лежащих на дне или переносившихся водами фрагментах лентовидных водорослей рода Vendotaenia (есть мнение, что примофлагеллы могли быть эпифитами вендотений), на оболочках мезопланктона, известны они также и на сапропелевых пленках. Недавно найден еще один новый вендский актиномицет, который обитал на пустых чехлах нитчатых цианобактерий. Таким образом, уже в позднем венде актиномицеты освоили широкий спектр пищевых субстратов: от слизистых чехлов цианобактерий до целлюлозных стенок, оболочек или даже кутикулоподобных покровов макроскопических водорослей с кожистым талломом. Подавляющее большинство современных актиномицетов – обитатели почвы, пресных вод или паразиты. В позднем венде, а более древние актиномицеты пока неизвестны, это были пресноводные формы. Находка актиномицета на цианобактерии примечательна еще и тем, что пара актиномицет и цианобактерия образует простейший лишайник. Конечно, в данном случае это не симбиоз, а поселение деструктора на пищевом субстрате, но важен сам факт первой в ископаемой летописи встречи представителей этих двух групп организмов.

Подготовка к борьбе с силой тяжести

В течение позднего докембрия в развитии бентосных водорослей наблюдается очень интересная тенденция последовательного увеличения размеров и жесткости клеточных структур [12]. Древнейшая растительность – цианобактериальные маты, образованные одноклеточными и нитчатыми формами. Особенность архейских матов состоит в том, что нитчатые формы в них были представлены только голыми трихомами без трубчатых чехлов, а у одноклеточных форм не известны сохраняющиеся материнские оболочки, окружавщие дочерние клетки. Вероятней всего индивиды в таких колониях объединялись вместе в матоподобную пленку только за счет колониальной слизи. Начиная с раннего протерозоя появляются новые типы матов: нитчатые формы за счет трубчатых слизистых чехлов, переплетающихся между собой в результате скользящего движения нитей, образовывали войлокоподобную дерновину – матрикс мата, а появившихся пальмеллоидных колониях клетки были объединены вместе сохраняющимися после деления материнскими оболочками. Такие оболочки и трубчатые чехлы играли формообразующую роль и обеспечивали прочность мата. В рифее (точно в допозднерифейское время, а по некоторым датировкам даже уже в конце раннего рифея) появляются более широкие, чем это характерно для современных цианобактерий, нитчатые формы, которые не обладали гибкостью цианобактериальных нитей, а это означает, что они были не способны к скользящему движению. Такого рода нити сегодня характерны для эвкариотических водорослей, образующих заросли типа водорослевых лугов. Этот тип растительности характеризуется тем, что нити растут не параллельно субстрату, а перпендикулярно, и достигается это за счет существенно большей жесткости клеточных стенок и оболочек, которые у эвкариот сложены целлюлозой. В позднем рифее появляются пластинчатые и лентовидные водоросли, которые могли иметь пластинчатую или коровую структуру, что должно было приводить к возрастанию жесткости таллома и, соответственно, к увеличению размеров тела. В венде появляются макроскопические водоросли вендотениды, имевшие, судя по всему, кожистые талломы, покровные структуры которых отличались очень большой жесткостью [13]. В самом конце венда – самом начале кембрия появились так называемые известковые водоросли: как цианобактерии с обызвествленными слизистыми чехлами и оболочками, так и формы, которые откладывали карбонат не только на поверхности, но и внутриклеточно [14].

При сравнении последовательности появления основных типов бентосной растительности в докембрии и результатов экспериментов по скармливанию современным беспозвоночным водорослей с разными типами талломов [15] выявляется явный параллелизм между ними: в течение рифея и венда появлялись водоросли, талломы которых было все труднее и труднее выедаедать, но при этом биомасса водорослей увеличивалась. Такую тенденцию можно интерпретировать как результат коэволюции водорослей и питающихся водорослями животных. Утолщение стенок клеток, появление более плотных коровых клеток, а тем более появление в венде водорослей с кожистыми талломами с неизбежностью должно было сопровождаться развитием (вызывая его или будучи его результатом) у животных структур для разрушения плотных покровов или проникновения сквозь них. Появление известковых водорослей с максимально трудно выедаемыми слоевищами продолжает такую тенденцию развития бентосных водорослей, начавшуюся еще в рифее, и может быть связано с появлением примерно в это же время древнейших гастроподоподобных организмов [16], а гастроподы вместе с хитонами являются сегодня одними из основных групп животных, питающихся водорослями [17]. Таким образом, возможно, что в результате коэволюции между водорослями и растительноядными животными у водорослей возникли адаптации в виде целлюлозных клеточных стенок и оболочек, жестких талломов, кожистых (а может быть даже кутинизированных) покровов, которые оказались преадаптациями к предстоящей борьбе с силой тяжести, благодаря чему в раннем палеозое водоросли смогли выйти из воды, мира невесомости, на сушу в мир силы тяжести.

Первые структуры для разбрасывания спор

Древнейшими структурами, которые могли использоваться для решения проблемы разбрасывания спор, вероятно, были загадочные хитиноидные спирали, названные кохлеатинами [18]. Они известны из отложений второй половины верхнего венда и самых низов нижнего кембрия западной части Русской плиты и западного склона Анабарского массива на Сибирской платформе. Первые находки кохлеатин были опубликованы в 1974 г. Е.А.Асеевой, но особенности их строения, невероятно отличающегося от акритарх и нитчатых водорослей, не были распознаны, форма была описана как новый вид спиральносвернутых нитчатых водорослей рода Volyniella. Затем в 1980 г. Л.Т.Пашкявичене описала три новых вида кохлеатин, ей удалось понять, что эти формы имеют необычное строение, но отнесены они были все к тому же роду нитчатых водорослей. В 1983 г. Асеева выделила новый род Cochleatina для этих форм, но строение так и не было детально изучено и описано. Причина трудности распознания строения кохлеатин крылась не только в необычности их морфологии, но и в том, что в результате применявшихся тогда (привнесенных из спорово-пыльцевого анализа) методов выделения микрофоссилий из пород происходило избирательное разрушение в процессе обработки пробы именно наиболее сложных и крупных форм, так что исследователям изредка попадались лишь наиболее прочные – черные за счет обуглероживания органики при нагреве – экземпляры, на которых морфологию изучить было просто невозможно. Применение же в процессе обработки пробы азотной кислоты полностью разрушало кохлеатин. Всего этого удалось избежать, лишь специально модернизировав методику выделения микрофоссилий из пород и исключив процедуру центрифугирования. При этом был получен массовый материал как раз по наиболее сложным и крупным формам и выяснено, что казавшиеся ранее редкими и экзотичными кохлеатины на самом деле встречаются часто и бывают очень многочисленны.

Кохлеатины представляют собой плоскую органическую ленту шириной от менее 10 до более 70 мкм, которая свернута в катушку диаметром от 50 до 300 мкм. Лента толщиной от 1-2 до 5 мкм, плотная, по облику хитиноидная. Края ленты геометрически могут представлять собой части логарифмической спирали, дуги окружности или прямые линии, вследствие чего лента у разных видов имеет форму спирального или прямого клина. Ширина ленты плавно увеличивается от внутреннего (по положению в катушке) к наружному концу ленты. Внутренний конец ленты сужен и несет или пленчатую оторочку, или переходит терминально в пальцеобразные выросты. Внешний конец ленты у всех экземпляров оборван. В строении ленты можно выделить 3 или 4 продольных зоны. Первая зона (отсчет идет от того края ленты, что прилегает к воронковидному основанию катушки) оптически наиболее плотная и темная, гомогенная. Вторая зона единая или состоит из 2 подзон. В первом случае она сложена тонкой пленкой с поперечными структурами, которые после естественного удаления пленки превращаются в столбики одного или двух порядков шириной около 1 мкм. Во втором случае первая подзона имеет описанное строение, а вторая подзона сложена пленкой, разделенной на треугольные участки, из которых те, что прилегают основаниями к третьей зоне, оптически более плотные и образуют зубцы при удалении пленчатых треугольников между ними. Третья зона гомогенная, может быть почти столь же оптически плотной и темной, как первая. Четвертая зона известна у двух видов, это пленчатое образование, иногда загнутое. У двух видов один из краев ленты несет мелкие зубчики, второй же край ленты у этих видов, а у двух других видов оба края ленты – гладкие и ровные. Лента закручена в катушку, причем плоскость ленты расположена параллельно или под острым углом к оси навивания, соответственно катушка имеет цилиндрическую или коническую форму. Одно из оснований катушки ровное, другое воронковидное. Внутренние обороты катушки намотаны, как правило, туже, чем внешние, часто лента на внешнем обороте раскручена и вытянута по дуге или прямой. Лента разрывается продольно надвое, разрыв проходит или по границе второй и третьей зон, или внутри второй зоны по границе подзон, при этом полностью удаляется пленка, концы столбиков освобождаются и они превращаются в шипики. Катушки встречены в изолированном виде, реже в скоплениях, наложенными друг на друга, или на пленках сапропелеподобного вещества. Представители вида Cochleatina canilovica известны на поверхности ланцетовидных талломов Kanilovia insolita, где катушки располагаются всегда на поверхности одной и той же части таллома в один или два ряда, в последнем случае напротив или в шахматном порядке, при этом на поверхности напластования вне талломов кохлеатин практически нет, что свидетельствует о неслучайном характере их нахождения на талломах. А.А.Ищенко, обнаружившая каниловий, не смогла точно рассмотреть строение спиралей из-за того, что изучала материал лишь на поверхностях напластования пород. Ей показалось, что спираль образована нитью, то есть при жизни она имела внутренний объем. Такая интерпретация позволила ей предположить сходство этих спиралей с выводковыми побегами некоторых современных бурых водорослей и мохообразных, служащих им для вегетативного размножения. Эта аналогия с неизбежностью привела Ищенко к выводу об обитании и размножении каниловий в условиях кратковременного осушения прибрежных биотопов. Такой вывод представляется очень важным, необычным и сильно меняющим существующие представления о древнейших этапах освоения суши растениями, поэтому важно постараться найти решающие доказательства в пользу этой точки зрения или серьезные возражения против, учитывая строение спиралей.