Смекни!
smekni.com

Генетические исследования элементарной рассудочной деятельности и других когнитивных способностей животных (стр. 5 из 8)

Однако на самом деле картина межлинейных различий оказалась более сложной. Так, не в пример обучению реакции избегания тока в челночной камере, в тесте, когда для избегания удара тока надо было выпрыгивать из камеры, крысы «тупой» линии обучались лучше. Это может означать, что в эксперименте Трайона отбор животных производился (неосознанно, разумеется) не только на способность к обучению, но и на какие-то особенности поведения, связанные с лабиринтом данной конфигурации. В дальнейшем было обнаружено, что у ТМВ пищевая мотивация была выше, чем у TMD, а оборонительная — слабее и они меньше, чем «тупые», отвлекались при выполнении навыка. В то же время крысы линии TMD были более пугливы и сильнее реагировали на манипуляции дверцами лабиринта.

В настоящее время исследователи приходят к выводу, что крысы линии ТМВ лучше решают тесты, связанные с ориентацией в пространстве, тогда как TMD — успешнее обучаются при использовании зрительных раздражителей. Можно полагать, что отбор на разную степень успеха обучения в лабиринте способствовал формированию генотипов, у которых особенности процесса восприятия, параметры пространственной памяти, мотивация и другие феноти-пические признаки оказались в одном случае оптимальными, а в другом — субоптимальными для выполнения данной реакции.

Генетические исследования условной реакции активного избегания.

Активное избегание удара электрического тока в челночной камере (см. гл. 3)— это четкий тест на обучаемость у лабораторных грызунов, показатели которого легко измерить. Он достаточно унифицирован и его результаты, полученные в разных лабораториях, легко сопоставить друг с другом. Поскольку в качестве условного раздражителя можно выбрать звук, то тест позволяет включать в сравнение и животных-альбиносов, не опасаясь, что свойственная им низкая острота зрения повлияет на успешность выполнения навыка.

В начале 60-х годов на основе популяции крыс Вистар итальянский исследователь Дж. Биньями начал селекцию на высокую и низкую способность крыс к обучению реакции активного избегания в челночной камере. Уже через несколько лет между селектированными линиями существовали достоверные различия в обучаемости: линии были сформированы. ОниполучилиназваниеРимских {Roman High Avoidance, RHA, Roman Low Avoidance, RLA). С начала 70-х годов селекция и разведение этих крыс проводились независимо в нескольких лабораториях разных стран (Driscoll, Battig, 1982; Fernandez-Teruel et al., 1997).

Исследование крыс Римских линий с помощью практически всех существующих методик оценки поведения дало основание считать, что наиболее сильные межлинейные различия у RHA и RLA связаны с эмоциональностью и разным типом реакции крыс двух линий на стрессоры.

Эти линии тем не менее все же различаются и по способности к ассоциативному обучению как таковой.

В 70-е годы путем селекции были созданы еще две линии крыс — Сиракузские {Syracuse High Avoidance, SHA, Syracuse Low Avoidance, SLA). Они, как и Римские линии, достоверно различались по скорости усвоения реакции активного избегания, но (в отличие от Римских), не различались по уровню двигательной активности. Исходной популяцией для этой селекционной работы послужили крысы Лонг-Иванс. В настоящее время крысы хорошо обучающейся линии SHA дают примерно 40 реакций избегания в 60 предъявлениях теста, тогда как SLA — ни одной. У плохо обучающейся линии SLA было мало межсигнальных реакций, однако скорость выполнения реакций избавления (т.е. реакции на включение собственно болевого стимула — электрического тока) у них не отличалась от линии SHA. Иными словами, межлинейные различия обнаруживались в «готовности» к выполнению перехода из одной половины камеры в другую, но не затрагивали реакции на боль. В тесте «открытого поля» у Сиракузских, так же как у Римских линий, различался уровень возбудимости вегетативной нервной системы. Речь идет о так называемой «эмоциональности» крыс, которая оценивается по числу болюсов дефекации при помещении животного в новую, слегка пугающую обстановку теста «открытого поля». SLA, так же как и RLA, оказались более «эмоциональными», т.е. испуг у них был сильнее.

Возможно, что менее эффективное обучение реакции избегания, общее для линий RLA и SLA, имеет одну причину — повышеннуга пугливость этих животных, которая препятствует образованию ассоциации между условным сигналом и реакцией животного.

Различия в процессах обучения и памяти в связи с генетической изменчивостью строения мозга. В соответствии с традиционно принятой в нейрофизиологии логикой исследований функциональную роль того или иного отдела мозга в формировании поведения обычно анализировали путем оценки последствий его разрушения, а также электрической и/или фармакологической стимуляции.

К началу 70-х годов считалось установленным, что одна из функций гиппокампа (рис. 2А) — мощное модулирующее влияние на процессы обучения, в частности торможение инструментальных ус-ловнорефлекторных реакций (Виноградова, 1975).

Американские исследователи Р. и Ц. Ваймеры и Т. Родерик выполнили исследование, в котором анализировалась роль генотипических особенностей в обеспечении функции гиппокампа. Способность мышей генетически гетерогенной популяции к обучению пассивной реакции избегания удара электрического тока (при однократном его применении) авторы сопоставили с общим объемом гиппокампа, который определяли после окончания экспериментов. Для этого на срезах мозга каждого животного, прошедшего тест на обучение, определили площадь, занимаемую гиппокампом, а затем в соответствии с существующими морфометрическими правилами вычислили его суммарный объем (Wimer et al., 1971).

Сопоставление результатов опытов с поведением и данными подсчетов показало, что чем больше был размер гиппокампа, тем эффективнее данное животное обучалось пассивному избеганию.

Коэффициенты корреляции достоверно свидетельствовали о том, что размер гиппокампа (а возможно, какого-то из его отделов) определяет особенности выполнения выученного навыка (т.е. обучения как такового). Очень важно, что такая корреляция была получена в эксперименте без применения инвазивных методов, т.е. без прямого нарушения целостности мозга. Кроме того, поскольку исследуемая популяция мышей была генетически высокогетерогенной, можно было предположить, что обнаруженная скореллированная изменчивость обоих признаков (размер гиппокампа и эффективность научения) по крайней мере частично имела генетическую основу.

Морфометрические исследования (т.е. количественная оценка общих размеров) ряда отделов гиппокампа у мышей и крыс разных генотипов подтвердили существование достоверных межлинейных различий. Первоначально для анализа была выбрана условная реакция избегания в челночной камере (см. 3.2.2). Индивидуальную изменчивость темпов обучения этой реакции исследователи рассматривали как зависимую переменную (см.: Lipp et al., 1989; Schwegler, Lipp, 1995). В качестве независимой взяли вариабельность зоны окончания мшистых волокон, аксонов гранулярных клеток зубчатой фасции гиппокампа на базальных дендритах пирамидных нейронов поля САЗ (рис. 2А). Мшистые волокна оканчиваются в пирамидном слое поля САЗ крупными синаптическими бляшками. Зоны их окончаний формируют два четких синаптических поля, т:е. две области проекции. Одна из них располагается непосредственно над пирамидными нейронами поля САЗ и называется супрапирамидным слоем. Вторая, меньшая по объему, располагается ниже или внутри слоя пирамидных клеток. Эта область называется слоем интра- и инфрапирамидных мшистых волокон, iipMF. Избирательная окраска именно этой структуры (метод Тимма) позволяет с высокой точностью определить ее размеры. У крыс Римских линий (см. выше), резко различающихся по скорости формирования навыка избегания удара тока, была выявлена отрицательная корреляция между площадью проекции мшистых волокон iipMf способностью к обучению этой реакции. У мышей ряда инбредных линий, в том числе линий DBA/2J, СЗН/Не (размеры их зон проекций мшистых волокон схематически представлены на рис. 2Б справа), также была обнаружена сильная и высокодостоверная отрицательная (—0,92) корреляция площади iipMF показателей обучения в челночной камере. У гибридов второго поколения от скрещивания этих линий корреляция может сохраниться только в случае, если ассоциация обоих признаков неслучайна. В эксперименте индивидуальная корреляция способности к обучению и площади iipMF у гибридов оказалась высокой.

Рис. 2. Роль размера проекционной зоны iipMF гиппокампа мышей в формировании пространственного навыка поиска пищи в радиальном лабиринте.

А — схема строения гиппокампа; толстой стрелкой показана зона окончания iipMF, Б — слева: схема последовательных посещений мышью лучей радиального лабиринта, содержащих приманку, с небольшим числом повторных, ошибочных заходов; справа: график, отражающий зависимость между числом ошибочных заходов на 5-й день теста у мышей ряда инбредных линий, различающихся (нижняя схема) по относительному размеру проекции iipMF, который отложен по оси абсцисс графика (по: Lipp, Wolfer, 1995).

На большом и разнообразном экспериментальном материале было показано, что крысы и мыши тем лучше обучаются данному навыку, чем меньше у них площадь iipMF.

Напомним, что выработка навыка избегания наказания в челночной камере — это типично лабораторный тест, аналога которому в естественном поведении грызунов практически нет. Его отрицательная корреляция с размером определенного отдела мозга еще ничего не говорит о функциональной значимости этой структуры. В этом отношении значительно больший интерес представляло исследование таких же корреляций в тестах, более адекватных экологической специализации крыс и мышей.

Для выяснения участия генотипа в формировании когнитивных способностей животных более информативными оказались данные о корреляции размера iipMF с успешностью формирования навыка обучения в радиальном лабиринте (см. 3.4.2.1), которое требует формирования пространственных представлений (формирования «мысленного плана» лабиринта, см. 3.4). В таких экспериментах была обнаружена достоверная положительная корреляция размера iipMF и обучаемости мышей пространственному навыку (Schwegler, Lipp, 1995). На рис. 2Б слева показана схема перемещения мыши по радиальному лабиринту при решении задачи, а также график зависимости успешности выполнения навыка от размеров данной зоны синаптических окончаний. Под графиком схематически изображены размеры проекций мшистых волокон у мышей двух линий (см. выше). Выполнение теста Морриса (обучение в водном лабиринте, см. 3.4.2.2), точнее, «прочность» сформированной пространственной памяти, положительно коррелирует с размером iipMF (Schwegler, Lipp, 1995).