Таким образом, лишь немногие из орудий самоубийства служат только этой цели: большинством из них клетка пользуется и в “домашнем быту”. Возникает вопрос: а все ли они необходимы для совершения суицида? И если нет, то зачем производить столь непомерный арсенал орудий? На эти вопросы мы сможем ответить, когда рассмотрим специфику протекания запрограммированной смерти у одноклеточных организмов.
Суицид у одноклеточных
Практически у всех простейших организмов внешние признаки апоптоза те же самые, что у клеток многоклеточных, и, как у них, к гибели приводят разные причины. У одноклеточных водорослей ее вызывает отсутствие света или окислительный стресс, а предотвращают ингибиторы каспаз и антиоксидантный фермент, расщепляющий Н2О2, - каталаза (каспазы у них тоже выявлены - с помощью антител). Паразитические жгутиконосцы кончают жизнь самоубийством, если им помогают ингибитор протеинкиназы С ставроспорин (он же стимулирует апоптоз и в клетках млекопитающих) и перекись водорода, а предотвращают тоже ингибиторы каспаз. Экстракт цитоплазмы паразитического простейшего Leishmania major в опытах вызывал характерные для апоптоза изменения в изолированных ядрах млекопитающих, свидетельствуя о присутствии в нем AIF-подобных белков. Изолированные митохондрии L.major теряли цитохром c при инкубации с рекомбинантным Вах человека даже тогда, когда Вах был лишен трансмембранного домена, необходимого для встраивания в наружные мембраны митохондрий. Следовательно, у L.major есть белки, способные взаимодействовать с Вах.
У дрожжей найдены практически все орудия суицида, имеющиеся у многоклеточных, кроме лизосомальных катепсинов и представителей семейства Bcl-2. Тем не менее, гены проапоптозных белков млекопитающих при экспрессии в дрожжах вызывают их запрограммированную гибель, а Bcl-2 защищает пекарские дрожжи (Saccharomyces сerevisiae) от гибели, вызванной окислительным стрессом. У Shizosaccharomyces pombe найден Rad9-белок, содержащий последовательность аминокислот, необходимую для взаимодействия с Bcl-2.
К апоптозу дрожжей приводят вещества, которые они сами же и продуцируют: например, уксусная кислота (продукт брожения), перекись водорода или a-фактор - пептидный половой феромон, вырабатываемый a-типом гаплоидных клеток S.сerevisiae. При концентрации <1 мкМ этот феромон стимулирует конъюгацию клеток противоположного типа спаривания с дрожжами a-типа, а при более высокой - вызывает блокаду клеточного цикла и апоптоз. Мутация активируемой феромоном протеинкиназы предотвращает и смерть, и появление ее маркеров.
Слизистые грибы (миксомицеты) - уникальные организмы, проходящие в своем развитии одно- и многоклеточную стадии. Когда в почве достаточно питательных веществ, миксомицеты существуют в виде отдельных амебообразных клеток - миксамеб. Во время голодания они сползаются и образуют одно большое клеточное скопление - плазмодий. Некоторое время он ползает по субстрату, а потом останавливается и начинает формировать плодовое тело. Часть его клеток при этом превращается в споры, а часть - в стебельковые клетки, выполняющие опорную функцию. Именно они подвергаются запрограммированной гибели, в целом похожей на классический апоптоз, но сопровождающейся интенсивным появлением вакуолей. Интересно, что ДНК стебельковых клеток не распадается на фрагменты. Ингибиторы каспаз не препятствуют гибели клеток, но нарушают нормальное развитие плодовых тел. У амеб Dictyostelium discoideum найдены гомологи четырех белков, участвующих в запрограммированной смерти клеток многоклеточных организмов: AIF, Alix и два ALG-2. Примечательно, что гены обоих гомологов ALG-2 экспрессируются в растущих миксамебах. Мутанты, лишенные одного или обоих этих генов, формируют нормальные плодовые тела, однако мутанты по гену alix имеют ярко выраженные дефекты развития.
У инфузорий есть все виды орудий самоубийства (в том числе каспазы-8 и -9, но не -3), кроме белков семейства Bcl-2 (пока их просто не искали). Инфузория Paramecium tetraurelia синтезирует катепсины L и S. У Tetrahymena pyriformis, штамма W, найден катепсин В.
Таким образом, как мы видим на примере самых примитивных простейших, для запуска апоптоза в принципе достаточно двух компонентов: активной формы кислорода и хотя бы одной цистеиновой протеазы, т.е. каспазы. В этой связи отметим, что инициаторные каспазы в ходе эволюции возникают раньше, чем эффекторные; последние не найдены ни у кого из простейших. У большинства эукариот ведущая роль в стимуляции апоптоза принадлежит митохондриальным факторам - цитохрому с и AIF. Тем не менее, не имеющий митохондрий паразит мочеполовой системы человека Trichomonas vaginalis каким-то образом обходится без обоих факторов. Отсутствие гомологов ALG-2 у слизистых грибов не нарушает образования плодовых тел, из чего следует, что и эти белки необязательны для апоптозного процесса. Следовательно, большинство белков, принимающих участие в запрограммированной смерти, предназначено для более тщательной ее регуляции. А тщательность вряд ли была бы возможна при малом количестве звеньев.
* * *
Биологический смысл существования сразу нескольких систем запуска апоптоза, по-видимому, в том, чтобы его могли независимо друг от друга побуждать стимулы разного рода: повреждение генома, стрессовые воздействия, необходимость для организма в целом и т.д. Примитивным одноклеточным организмам просто не нужна столь многокомпонентная система стимуляции апоптоза, они гибнут только при стрессовых воздействиях, потенциально опасных для генома и, следовательно, для популяции в целом. Многоклеточному же организму необходимо, чтобы клетки
- были всегда готовы покончить с собой по его приказу там, где это потребуется;
- сами принимали такое решение при возникновении неполадок в собственном геноме или при угрозе их появления.
Для этого и нужно, чтобы апоптоз могли запустить и специальные сигнальные молекулы (через “рецепторы смерти”), и повышение уровней АФК и цитоплазматического кальция (всегда сопровождающее любые стрессы), и повреждение генома.
Функции апоптоза у организмов разных уровней филогенеза, по-видимому, общие. У одноклеточных организмов этот вид гибели служит не только эффективным средством очистки сообщества от мутантных (дефектных) особей, но и обеспечивает процессы морфогенеза - например, при образовании плодовых тел у слизистых грибов. Недостаток в питании вызывает смерть стареющих и поврежденных дрожжевых клеток, чтобы их молодые и здоровые потомки могли жить безбедно. Однако если питательные вещества полностью отсутствуют (как, например, в дождевой воде), альтруизм теряет смысл и апоптоз не включается. У дрожжей запрограммированную смерть стимулируют факторы, которые накапливаются по мере повышения плотности культуры - уксусная кислота, перекись водорода и a-фактор. Вероятно, таким способом поддерживается оптимальная плотность популяции. У инфузорий Tetrahymena thermophila апоптоз, наоборот, наступает при низкой плотности - потому, вероятно, что этим простейшим для нормального существования необходима высокая плотность, облегчающая конъюгацию. У дрожжей смертельный процесс запускается феромоном, т.е. тем же веществом, что и спаривание - видимо, для того, чтобы девственные (т.е. с большой вероятностью ущербные) клетки не отнимали питание у тех, кто здоров и может спариваться. Так что альтруизм - жертвование собой ради ближнего - свойство, присущее даже одноклеточным.