Смекни!
smekni.com

Интегралы, дифуры, матрицы (стр. 3 из 5)

4. Границя ф-ії двох змінних

Число В називається границею ф-ії z=f(x;y) при х-x0, y-y0, якщо для будь-якого e>0 існує число d>0 таке, що при виконанні нерівності 0<(x-x0)2+(y-y0)2<d2 виконується нерівність |f(x;y)-B|<e і позначається:

Зауваження: Для ф-ії багатьох змінних справедливі теореми про границю суми, добутку чи частки, які аналогічні відповідним теоремам для ф-ії однієї незалежної змінної.

5. Неперервність ф-ії двох змінних

Ф-ія z=f(x;y) називається неперервною в точці P0(x0;y0), якщо

Ф-ія називається неперервною в області (замкненій чи відкритій), якщо вона неперервна в кожній точці цієї області.

Теорема: Нехай на множині D визначена складна ф-ія z=f(x;y), де x=x(u;v), y=y(u;v) і нехай ф-ії x=x(u;v), y=y(u;v) неперервні в точці (u0;v0), а ф-ія f(x;y) неперервна в точці (х00), де x0=x(u0;v0), y0=y(u0;v0). Тоді складна ф-ія z=f(x(u;v);y(u;v)) неперервна в точці (u0;v0).

6. Властивості неперервної ф-ії двох змінних

Теорема. Якщо ф-ія неперервна в точці, то вона обмежена деяким околом цієї точки.

Теорема. Якщо ф-ії f(x;y) та g(x;y) неперервні в точці (x0;y0), то в цій точці будуть неперервними f(x;y)±g(x;y), f(x;y)×g(x;y), f(x;y)/g(x;y) при g(x0;y0)¹0

Теорема. Якщо ф-ія неперервна на замкнутій множині, то вона обмежена на цій площині.

Теорема. Якщо ф-ія неперервна на замкнутій обмеженій множині, то серед її значень є як найменші, так і найбільші.

Теорема. (про нуль неперервної ф-ії): Нехай ф-ія неперервна на зв’язній множині D і приймає у двох точках А і В цієї множини значення різних знаків. тоді у множині D знайдеться така точка, що в ній ф-ія обертається в нуль.

Теорема. (про проміжне значення): Нехай ф-ія f(x;y) неперервна на зв'язаній множині D і у двох будь-яких точках А та В цієї множини вона приймає будь-яке значення m, яке лежить між f(A) і (B), тобто існує така точка cÎD, що f(c)=m.

ДИФЕРЕНЦІЙОВНІСТЬ Ф-ІЇ ДВОХ ЗМІННИХ

1. Частковий та повний прирости ф-ії двох змінних.

Різницею

називають повним приростом ф-ії
при переході від точки (х00) до точки
і позначають Dz. Різницю
називають Частковим приростом по х, а різницю
- частковим приростом по у.

Аналогічно визначаються прирости ф-ії більш ніж двох змінних.

2. Диференційовність ф-ії двох змінних

Ф-ія

називається диференційовною у точці (х00), якщо її повний приріст Dz можливо подати у вигляді:
, де А, В – числа, a, b – нескінченно малі при Dx-0, Dy-0.

Головна лінійна структура приросту ф-ії, тобто АDх+ВDу називається повним диференціалом ф-ії (першим диференціалом) f(x;y) в точці x0, y0 і позначається dz:

Теорема: Якщо ф-ія z=f(x;y) диференційовна в точці (x0,y0), тоді існують границі:

Означення: Нехай ф-ія z=f(x;y) визначена в точці (х00) і в її деякому околу. Якщо існує

, то вона називається частинною похідною по х (по у) функції в точці (х00) і позначається
або
.

3. Достатня умова диференційовності ф-ії двох змінних у точці

Існування частинних похідних – необхідна, ала не достатня умова диференційовності ф-ії двох змінних в точці.

Теорема: Якщо ф-ія z=f(x;y) в деякому околу точки (х00) має неперервні частинні похідні, то вона диференційовна в точці (х00).

4. Диференціювання складної ф-ії

Теорема: Нехай на множині D визначена складна ф-ія z=f(u;v), де u=u(x;y), v=v(x;y) і нехай ф-ії u(x;y), v(x;y) мають у деякому околу точки (х00)ÎD неперервні частинні похідні, а ф-ія z=f(u;v) має неперервні частинні похідні в деякому околу точки (u0;v0), де u0=u(x0;y0), v0=v(x0;y0). Тоді складна ф-ія z=f(u(x,y);v(x,y)) диференційовна в точці (х00), причому

5. Похідна за напрямом. Градієнт

Означення: Нехай ф-ія z=f(x;y) визначесна в деякому околі точки P0=(x0;y0); l деякий промінь з початком в точці P0=(x0;y0); P=(x;y) – точка на цьому промені, яка належить околу, що розглядається, – околу точки P0=(x0;y0); Dl – довжина відрізка P0Р. Границя

, якщо вона існує, називається похідною ф-ії z=f(x;y) за напрямом
в точці Р0 і позначається

В частинному випадку,

є похідна ф-ії z=f(x;y) за доданим напрямом осі Ох , а
– за напрямом осі Оу.

Похідна за напрямом

характеризує швидкість зміни ф-ії z=f(x;y) в точці P0=(x0;y0) за напрямом
.

Теорема: Якщо ф-ія z=f(x;y) має в точці P0=(x0;y0) неперервні частинні похідні, тоді в цій точці існує неперервна похідна

за будь-яким напрямом
причому
де
– значення частинний похідних в точці P0=(x0;y0).

Означення: Вектор з координатами

, який характеризує напрям максимального зростання ф-ії z=f(x;y) в точці P0=(x0;y0)

6. Частинні похідні і повні диференціали вищих порядків

Означення: Диференціалом другого порядку від ф-ії z=f(x;y) називається диференціал від її повного диференціалу, тобто d2z=d(dz). Аналогічно визначають диференціали третього і вищого порядків.

Теорема: Якщо ф-ія z=f(x;y) визначена в області D, в цій області існують перші похідні

і
, другі змішані похідні
і
і похідні і
як ф-ії від х і у неперервні в точці (х00), тоді в цій точці

7. Похідна неявної ф-ії

Якщо існує неперервна ф-ія однієї змінної y=f(x) така, що відповідні пари (x;y) задовольняють умову F(x;y), тоді ця цмова називається неявною формою ф-ії f(x), сама ф-ія f(x) називається неявною ф-ією, яка задовольняє умову F(x;y)=0.

Припустимо, що неперервна ф-ія y=f(x) задана в неявній формі F(x;y)=0 і що

. Похідна
знаходиться за формулою:

Аналогічно частинні похідні ф-ії двох незалежних змінних z=f(x;y), яка задана за допомогою рівняння F(x;y;z)=0 де F(x;y;z) – диференційовна ф-ія змінних x,y,z, можуть бути обчислені за формулами:

за умови, що

8. Формула Тейлора для ф-ії двох змінних

Розглянемо ф-ію двох змінних z=f(x;y). Припустимо, що в околу заданої точки (x0;y0) ця ф-ія має неперервні похідні всіх порядків, до n+1 включно. Надамо x0 і y0 деякі прирости Dx і Dy так, щоб прямолінійний відрізок, який з’єднує точки (x0;y0) і (x0+Dx;y0+Dy), не вийшов за межі околу, що розглядається. Тоді формула Тейлора:

___

ДЩСЛІДЖЕННЯ Ф-ІЇ ДВОХ ЗМІННИХ

1. Екстремум ф-ії двох змінних

Означення: Нехай ф-ія z=f(x;y) визначена в деякому околі точки (x0;y0) і неперервна в цій точці. Якщо для всіх точок (x;y) цього околу виконується нерівність

, тоді ця точка (x0;y0) називається точкою максимуму (мінімуму) ф-ії z=f(x;y).

Точки максимуму і мінімуму наз. точками екстремуму.