Смекни!
smekni.com

Электронные словари и их применимость для традиционного машинного перевода (стр. 11 из 13)

Самое интересное, что эти проблемы действительно являются основными при разработке систем машинного перевода, другое дело, что методы их решения известны далеко не всем и отнюдь не так просты, как может показаться.

Методы организации больших баз данных достаточно хорошо разработаны, но для перевода не менее, а может быть, и более важно правильно структурировать информацию, которая приписывается элементу базы, правильно выбрать этот самый элемент. Сколько, например, записей в словаре должно соответствовать обыкновенному русскому слову "программа"? И, вообще, большой словарь - это словарь, который содержит много словарных статей, или словарь, который позволяет распознать много слов из текста?Очевидно, более верно второе. Поэтому для описания и входного, и выходного языка в системе должен существовать некоторый формальный метод описания морфологии, на котором основывается выбор единицы словаря.

Практически во всех системах, которые претендуют на то, чтобы считаться системами перевода, проблема представления морфологических моделей так или иначе решается. Но одни системы могут распознать миллион словоформ при объеме словаря в пятьдесят тысяч словарных статей, а другие при объеме словаря в сто тысяч словарных статей могут распознать именно эти сто тысяч.

В системах семейства PROMT разработано практически уникальное по полноте морфологическое описание для всех языков, с которыми системы умеют обращаться. Оно содержит 800 типов словоизменений для русского языка, более 300 типов, как для немецкого, так и для французского языка, и даже для английского, который не принадлежит к флективным языкам, выделено более 250 типов словоизменений. Множество окончаний для каждого языка хранится в виде древесных структур, что обеспечивает не только эффективный способ хранения, но и эффективный алгоритм морфологического анализа.

Кроме того, используемая модель морфологии позволила разработать экспертную систему для пользователя - создателя словаря. Эта система фактически автоматизирует процедуру выделения основы и определения типа словоизменения при вводе новых словарных статей.

Такой возможности нет ни в одной из существующих систем машинного перевода, даже в таких распространенных системах как Power Translator (Globalink, США), Language Assistant (MicroTac, США), TRANSEND (Intergaph,США), где пользователям приходится вручную спрягать и склонять слова для задания морфологической модели.

Однако разработка описания морфологии позволяет решить только проблему того, что является заголовком словарной статьи, по которому происходит идентификация единицы текста и единицы словаря. Но ведь идентификация слова из текста со словарной статьей происходит не ради идентификации, как это требуется в спеллерах или электронных словарях, она необходима для выполнения программой собственно процедур перевода. Какая же нужна информация в словарной статье и как должны быть описаны правила перевода для того, чтобы программа переводила?

Во многих системах МП в прошлом (как, впрочем, и сейчас) словарное описание и описание алгоритмов рассматривались как стороны одной проблемы, но решение, как правило, искалось в ограничении рассматриваемого мира, либо грамматического, либо семантического. Например, на основе признака "принадлежность к части речи" описывалась грамматика такого типа:

именная группа - это существительное

именная группа - это прилагательное + именная группа

глагольная группа - это глагол + именная группа

предложение - это именная группа + глагольная группа

Понятно, что некоторая часть предложений естественного языка описывается такой грамматикой, но эта часть очень незначительна, и на ее основе нельзя правильно анализировать и переводить хоть сколько-нибудь реальный текст. Но зато можно использовать эффективные методы построения преобразователя по заданной грамматике или, на худой конец, написать программу, которая путем перебора построит древа зависимостей для ограниченного множества предложений. Такие системы точно так же получали определения "экспериментальные".

Так или иначе, но именно из таких проектов появились системы перевода, которые сейчас предлагаются конечному пользователю. Это и Power Translator (компания Globalink) и Language Assistant (компания MicroTac) и TRANSEND (компания Intergraph).

Системы семейств STYLUS и PROMT - не исключение, поскольку многие специалисты компании PROMT имели опыт работы в такого типа проектах. Однако при разработке систем PROMT впервые был применен фактически революционный подход, который и позволил получить впечатляющие результаты. Системы перевода семейства PROMT - это системы, спроектированные на основе не лингвистических, а кибернетических методов.

Оказалось, что очень продуктивно рассматривать систему перевода не как транслятор, задачей которого является перевод текста, допустимого с точки зрения входной грамматики, а как некоторую сложную систему, задачей которой является получение результата при произвольных входных данных, в том числе и для текстов, которые не являются правильными для грамматики, с которой работает система.

Вместо принятого лингвистического подхода, предполагающего выделение последовательных процессов анализа и синтеза предложения, в основу архитектуры систем было положено представление процесса перевода как процесса с "объектно-ориентированной" организацией, основанной на иерархии обрабатываемых компонентов предложения. Это позволило сделать системы PROMT устойчивыми и открытыми.

Кроме того, такой подход дал возможность применения различных формализмов для описания перевода разных уровней. В системах работают и сетевые грамматики, близкие по типу к расширенным сетям переходов, и процедурные алгоритмы заполнения и трансформаций фреймовых структур для анализа сложных предикатов.

Описание лексической единицы в словарной статье, которое фактически не ограничено по размерам и может содержать множество различных признаков, тесно взаимосвязано со структурой алгоритмов системы и структурировано не на основе извечной антитезы синтаксис - семантика, а на основе уровней компонентов текста.

При этом системы могут работать и с не полностью описанными словарными статьями, что является важным моментом при открытии словарей для пользователя, от которого нельзя требовать тонкого обращения с лингвистическим материалом.

Первая система машинного перевода, выпущенная компанией PROMT в 1991 году, переводила с английского языка на русский специализированные тексты по программному обеспечению. Она использовала небольшой словарь - около 17 тыс. слов и выражений, работала в среде ДОС и не имела средств настройки для пользователя. Но уже эта первая система была правильно устроена, и нынешняя технология разработки алгоритмов машинного перевода, применяемая в компании PROMT, не претерпела значительных изменений. Напротив, найденный тогда подход оказался очень плодотворным для самых разных языков.

Сначала поясним некоторые определения: вместе с развитием машинного перевода как области прикладной лингвистики появились и классификации систем, и стало принято делить системы перевода на системы типа TRANSFER и системы типа INTERLINGUA. Это разделение основано на особенностях архитектурных решений для лингвистических алгоритмов.

Алгоритмы перевода для систем типа TRANSFER строятся как композиция трех процессов: анализ входного предложения в терминах структур входного языка, преобразование этой структуры в аналогичную структуру выходного языка (TRANSFER) и затем синтез выходного предложения по полученной структуре.

Системы типа INTERLINGUA предполагают априори наличие некоторого метаязыка структур (INTERLINGUA), на котором можно описать все структуры как входного, так и выходного языков в общем случае; поэтому алгоритм перевода в системе типа INTERLINGUA предполагается как более простой: анализ входного предложения в терминах метаязыка и затем синтез из метаструктуры соответствующего предложения выходного языка. "Единственная" сложность в этом случае - разработать сам метаязык и описать естественный язык в соответствующих терминах.

Несмотря на то, что эта классификация существует, и в среде разработчиков машинного перевода считается хорошим тоном спросить, к какому типу относится система PROMT, не было разработано еще не одной реальной системы, основанной на принципе INTERLINGUA.

Система PROMT не является исключением, и на этот вопрос мы отвечаем: наша система выполняет перевод типа TRANSFER. Но это очень простой ответ, он практически не отражает особенностей архитектуры системы PROMT. А особенности состоят в том, что этот метод (TRANSFER) применен в системе не в соответствии с лингвистическим стандартным подходом.

Дело в том, что система перевода, как правило, работает в условиях не полностью описанных данных, ведь в язык - это живая система, которая развивается очень быстро: постоянно появляются новые слова, новые функции старых слов, и, вместе с новыми сущностями, новые значения. В этих условиях определяющим структурным свойством алгоритмов перевода становится их устойчивость к произвольным входным данным, и в основу алгоритмов, выполняющих перевод в системе PROMT, вместо последовательного TRANSFER'а был заложен иерархический подход, разделяющий процесс перевода на взаимосвязанные TRANSFER'ы для разных единиц анализа.

В системе выделяется уровень лексических единиц, уровень групп, уровень простых предложений и уровень сложных предложений. Все эти процессы связаны и взаимодействуют иерархически в соответствии с иерархией текстовых единиц, обмениваясь синтезируемыми и наследуемыми признаками. Такое устройство алгоритмов позволяет использовать разные формальные методы для описания алгоритмов разных уровней.

Рассмотрим уровень лексических единиц: лексическая единица - это слово или словосочетание, которое является единицей самого низкого уровня. И в случае входного, и в случае выходного языка слово описывается как совокупность основы и окончания. Это обеспечивает возможность, с одной стороны, распознавания входных слов и анализа входной морфологии и, с другой стороны, удобного синтеза выходных слов по их морфологической информации (основа, тип словоизменения и адрес окончания в массиве окончаний этого типа). Таким образом, если ввести правила преобразования входной морфологической информации в выходную морфологическую информацию, осуществляется TRANSFER на морфологическом уровне.