Рис. 3. а) полоса бумаги при протягивании ее по кромке стола,
б) та же полоса после протягивания
(скрученное состояние)
К описанной выше картине следует добавить, что на характер волнистости листа сильное влияние оказывают размеры и расположение отпечатанного на нем изображения. Вот несколько вариантов размещения изображения.
Отпечатанное изображение представляет собой сплошную плашку. В этом случае передняя часть листа (стапеля), примерно на 1/4–1/3 длины листа в направлении движения будет ровной, а остальная часть будет одной волной (рис. 5а).
Отпечатанное изображение представляет собой чередующиеся полосы, расположенные вдоль всего листа параллельно осевой линии печатного цилиндра. При печати происходит следующее. Когда зону контакта проходит запечатываемая полоса, поведение листа соответствует описанному выше. Когда же полоса заканчивается, лист перестает прилипать к офсетному полотну, резко отделяется от нее и натяжение его ослабевает. Потом следует снова запечатываемая полоса. Лист прилипает к резине, натягивается и снова деформируется. И так далее. При таком характере изображения волнистость стапеля проявляется наиболее сильно — рис. 5б.
Представим себе, что относительно средней линии печатной машины полосы расположены в шахматном порядке. Если на одной половине полоса есть, то на другой ее нет. Поэтому, когда одна часть листа на своей половине прилипает к офсетному полотну, часть листа на другой половине находится в свободном состоянии (конечно, под давление печати). Такой характер изображения полностью отразится на форме верхней поверхности стапеля. Следует отметить, что часть нижних листов выравнивается под тяжестью верхней части стапеля.
Печатается текстовый материал, равномерно расположенный по всей площади листа. В этом случае описанного выше явления практически можно не увидеть, поскольку ширина зоны контакта сопоставима с высотой шрифта, а площадь печати в зоне контакта невелика.
Отсюда следует, что волнистость стапеля будет различной при печати разных изображений. Понятно, что волнистость наиболее ярко проявляется на тонкой бумаге с малой жесткостью и массой. Картон, из-за своей жесткости намного меньше подвержен влиянию волнистости. При работе с картоном возникают свои проблемы. Кстати, как представляется, на сегодняшний день граница между картоном и бумагой по массе сегодня оказалась «размытой». Раньше границей являлись 250 г/м2. Меньше — бумага, больше —картон.
Рис. 4. Диаграмма зависимости Ж от угла поворота печатного цилиндра
Рис. 5. а) полоса бумаги, как бы запечатанная по всей длине; б) полоса бумаги, как бы запечатанная полосами
Последствия того, о чем сказано выше, еще нагляднее можно видеть на готовой журнальной продукции, отпечатанной на рулонных машинах с принципом печати «резина к резине». На листах журнала, обычно ближе к его корешку, часто заметны волны, параллельные корешку, приобретенные бумагой в результате описанного выше явления. Такая волнистость свидетельствует о том, что печатали на рулонной машине — лента бумаги прилипает то к одному цилиндру, то к другому, в зависимости от расположения печатающих элементов. Все это, кстати, сопровождается поперечными колебаниями ленты и, иногда, треском отдираемой от офсетной резины бумаги, особенно мелованной.
Выводы
Чем короче лист, тем меньше он будет деформироваться в хвостовой части и тем ровнее будет стапель. Это было подмечено давно, поэтому печатники стремятся не работать на машине с листами максимального для нее формата. Чем раньше лист выйдет из зоны печати, тем менее волнистым он будет в хвосте. Это одна из причин, по которой сложные для печати сюжеты лучше разместить в передней части листа.
Возможность машины работать с большим диапазоном бумаг не всегда оказывается полезным при работе на тонкой бумаге. Чем больше этот диапазон, тем меньшим будет радиус поддерживающих дисков и тем сильнее сказывается эффект деформации «хвоста» листа при печати на тонкой бумаге.
С точки зрения волнистости — чем меньше липкость краски, тем лучше. Тем легче бумага отделяется от офсетной резины и тем меньше она деформируется.
Борьба
Какие же есть меры борьбы с волнистостью? На ряде машин стали устанавливать приспособления, уменьшающие волнистость (скручиваемость) листов бумаги — рис. 6. С помощью этих приспособлений лист бумаги искусственно деформируется в обратную сторону, в результате чего его волнистость уменьшается. Но если исходить из того, что волнистость листа и стапеля — следствие, то придется признать, что это приспособление, улучшая внешний вид листов, не устраняет причину возникновения волнистости.
Еще одним способом ухода от волнистости листа является размещение стоек захватов кареток листовыводного транспортера на уровне делительной окружности приводных звездочек. В этом случае перепад скоростей на радиусном и прямолинейном участках траектории будет отсутствовать с вытекающими отсюда последствиями. Правда, это влечет за собой увеличение ширины машины, поскольку расстояние между приводными звездочками должно быть больше длины печатного цилиндра — звездочки должны разойтись с телом цилиндра. Расширение же машины влияет на снижение жесткости цилиндров, валиков, листовыводных кареток и других элементов, расположенных между стенками машины.
Но чаще всего уйти от возникновения волнистости листа стремятся за счет схемных решений при разработке печатной машины. Это означает следующее.
Угол a (рис. 1) стремятся сделать таким, чтобы к моменту передачи листа в захваты каретки листовыводного транспортера задняя кромка листа вышла бы из зоны печати. Колею, по которой двигаются каретки листовыводного транспортера, стремятся делать не просто из радиусных и прямолинейных отрезков, а из криволинейных отрезков с большими радиусами кривизны, чтобы не было больших скачков скоростей (ускорений) стоек захватов кареток при переходе с радиусного участка на прямолинейный и наоборот. Колея листовыводных транспортеров современных машин значительно отличается от того, что было еще лет 20–30 назад. Каретки теперь двигаются по более плавным траекториям, чем ранее. Сравните старую схему (рис. 1) и схему листовыводного транспортера одной из современных машин (рис. 7). Необходимость использования более плавной траектории связана и с другими процессами, а не только с выводом листа от печатного цилиндра. Но на них в этой статье мы останавливаться не будем.
Рис. 6. Схема приспособления для уменьшения волнистости листа
Рис. 7. Схема колеи листовыводного транспортера современной листовой печатной машины
А что же происходит при передаче листа между печатными секциями? В настоящее время наиболее часто применяются листопередающие системы, состоящие из листопередающих цилиндров, располагаемых между печатными цилиндрами соседних печатных секций. Известны два типа наиболее распространенных систем (рис. 8):
система из трех цилиндров (рис. 8а) — двух одинарного диаметра (по отношению к диаметру формного и офсетного цилиндров) и одного — двойного. Используется, как правило, при одинарном диаметре печатных цилиндров или при необходимости переворачивания листов для запечатывания оборотной стороны;
система из одного цилиндра двойного диаметра (рис. 8б); используется при двойном диаметре печатных цилиндров.
Конечно, есть и другие системы, основанные на использовании цилиндров, кратных трем или даже четырем диаметрам формного цилиндра, но они меньше распространены. В любом случае диаметр листопередающего цилиндра делают меньше диаметра печатного цилиндра (аналогично поддерживающим дискам), чтобы пропустить лист. Поэтому вышеизложенное в отношении листовыводного транспортера относится не только к последней печатной секции, но и к каждой из них. С этой точки зрения большой диапазон толщин не оправдан. Если на машине заложена максимальная толщина запечатываемого материала, например, 1,0 мм, то минимальная не должна быть 0,04 мм. Целесообразно чтобы минимум в этом случае был на уровне хотя бы 0,4 мм. Если машина предназначена для печати на картоне или она долго проработала на нем, то получить на ней приемлемое качество на тонкой бумаге может оказаться проблемой. Дело в том, что скорость ударения захвата о лист картона, лежащего на стойке, одна, а при переходе на тонкую бумагу — другая. Она возрастает, что может привести к смещению листа и ухудшению точности совмещения красок.
С этим явлением фирмы пытаются бороться разными способами. Например, около листопередающего цилиндра устанавливаются поддерживающие дуги, к которым тем или иным способом стремятся прижать лист. В этом случае лист движется по большому радиусу, что улучшает условия прохождения им зоны печатного контакта. В другом случае есть возможность изменять положение стоек захватов по высоте. Однако, если это часто делать, возможно появление нежелательных зазоров в подвижных соединениях. Используются и другие меры.
Точность совмещения красок
Интересно, оказывают ли описанные явления влияние на точность совмещения красок в хвостовой части листа? Такое влияние прослеживается, но его степень зависит от ряда факторов: толщины и жесткости листов, их размеров, влагостойкости бумаги и т. д.
До сих пор мы рассматривали поведение листа при выводе его из зоны печатного контакта. Но из этого рассмотрения вытекает следующее. Лист бумаги, выходя из зоны печатного контакта, испытывает сильное растяжение и изгибную деформацию, что приводит к изменению формы листа и его размеров. Поэтому можно предположить, что это не может не отразиться на точности совмещения красок в хвосте листа при печати не только в несколько прогонов, но и в один прогон через машину секционного построения. Косвенным подтверждением этому является то, что многие печатники часто жалуются — в «хвосте» листа несовмещение красок заметнее, больше, чем в «голове».