Смекни!
smekni.com

Проектирование технологии печатных процессов переиздания книги (стр. 14 из 15)

Введение

В процессе цветного воспроизводства цель краски состоит в том, чтобы выборочно поглотить свет, а функция бумаги в том, чтобы отразить его. Падающий свет, проходящий через слой краски, отражается от бумаги, проходит через слой краски снова, и появляется на поверхности краски. Наблюдатель видит часть этого света. Во время этих двух проходов через слой краски поглощенная часть света зависит от коэффициента поглощения в каждой длине волны и толщины красочного слоя. Есть, однако, другие факторы, которые будут взяты в счет. Например, такие как отражение первой поверхности и многократные внутренние отражения. При уголе падения 45 °, отражение первой поверхности составляет приблизи-тельно 4 %. Когда слой является глянцевым, отражение составит угол в 45 ° и не будет достигать глаза. А с поверхности матового стекла, часть этого зеркального отражения достигнет глаза и понизится очевидная плотность отражения. Много-кратные внутренние отражения вызывают увеличение плотности отражения, так как часть света поглощается каждый раз, когда свет проходит слой краски. Плотность отражения не увеличивается с увеличива-ющейся толщиной красочного слоя. Плотности насыщенности соответствует минимальный коэффициент отражения первой поверхностью.

Кривая расхода чернил (иллюстрация 1) является графиком печатной оптической плотности красок на основании функции толщины красочного слоя. Оптическая плотность печати увеличивается от ноля до степени насыщения, если толщина красочного слоя на бумаге увеличена. Эта кривая предоставляет только качественную инфор-мацию о красках. Чтобы описать количественно, существенно соответствие уравнению экспериментальных данных. Коэффициенты регресса полученные из кривой очень полезны для сравнения различных красок. Коэффициенты могут также быть связаны с некоторыми основными свойствами краски и бумаги. Однако, эмпирическая модель должна соответствовать экспериментальным данным, таким образом коэффициенты регресса могут быть полезными в характеристике взаимодействия.

Several models for curve fitting have been reported by different researchers, among them Tollenaar and Ernst (1962), Kornerup et al. (1964), Oittinen (1972), Calabro and Mercatucci (1974), Calabro and Savagnone (1983), Blom and Conner (1990), MacPhee and Lind (2002). Six of the models were reviewed and compared by Chou and Harbin (1991), as listed below: where w is the thickness of ink film on the substrate. Ds, m, and n are regression coefficients. D and R are respectively the optical density and reflectance of a print. The subscripts p and s represent paper and saturation. The equations 1 and 3 result from the shape of ink mileage curves. Equations 2 and 4 are their modifications by introducing a power index to the ink film thickness. It is a common practice in mathematics to add an exponent to independent variable in order to get a better curve fitting. Equation 6 originates from Bouguer’s law with some assumptions and simplifications (Kornerup et al., 1969). Equation 5 is a simplified version of equation 6. Chou and Harbin (1991) found that threeparameter equations fitted the experimental data much better than their twoparameter correspondents.

The saturation density Ds results from first-surface reflection, which is affected by the smoothness of the ink film surface. Surface roughness of an ink film is related to the ink’s leveling property, which is determined by its rheological properties (Chou et al., 1990). The parameter m determines how fast the ink mileage curve approaches the saturation density by the increase in ink film thickness. It has been reported that m correlates with the degree of contact between the ink film and the paper (Tollenaar and Ernst, 1962). It was also found that m was related to ink’s absorption of light and its value decreased with decreasing pigment concentration (Kornerup et al., 1969). The ink film thickness exponent n was found to be affected by ink’s rheological variables (Calabro and Savagnone, 1983), and the spectral properties of the pigment (Kornerup et al., 1969). The major disadvantage of these models is that they were based on the experimental data of prints made on IGT and/or Prufba printability tester using offset inks.

О нескольких моделях кривой сообщили различные исследователи, среди них Толленаар и Эрнст (1962), Корнеруп и др. (1964). Шесть из моделей были рассмотрены и сравнены Харбином (1991). Харбин нашел, что три параметра уравнения соответствовуют экспериментальным данным намного лучше, чем их двухпараметровые корреспонденты.

Плотности насыщенности Ds следуют из отражения первой поверхностью, которое затронуто гладкостью поверхности красочного слоя. Поверхностная грубость красочного слоя связана с гладкостью поверхности бумаги, которая определена ее реологическими свойствами. Параметр m определяет как быстро кривая расстояния краски приближается к плотности насыщенности с увеличением толщины слоя краски. Было обнаружено, что m связано со степенью контакта между красочным слоем и бумагой. Также было найдено то, что m связан с поглощением краской света и его значение уменьшалось с уменьшением концентрации пигмента. Толщина красочного слоя n, как оказалось, связана с реологическими переменными краски и спектральными свойствами пигмента. Главное неудобство этих моделей - то, что они были основаны на экспериментальных данных печатных изданий, сделанных на IGT и/Или Prufbauprintability тестере, использующими краски поглащения.

The quantity of transferred ink and hence the amount of ink on paper was determined by the weight difference of the printing disc before and after printing.Therefore, these models may not be applied to the ink mileage behavior of other ink types, nor on commercial printer. A new method has been studied to measure ink mileage (Xu et al., 2005). The inks were doped with a tracer, which were used to calculate the mass of the ink transfer, and hence the ink mileage.

This internal tracer method can be used in all kinds of ink types including solvent-based gravure and flexo inks. It can also be applied to commercial printing presses.

The objectives of this work were to use the internal tracer method to measure ink mileage on a commercial printer, to find a best model to fit the experimental data, and to study the regression coefficients.

Experimental

Five coated papers for rotogravure, of about the same grammage, were used in this experiment. The characteristics of the papers are reported in Table 1.

Grammage, Print-Surf (PPS) roughness, Gloss, and PPS porosity were measured according to TAPPI standards (TAPPI, 1999, 2002). A PPS Model 90 (Messmer Instrument) was used for roughness and porosity measurements. A Gardco® Novo-GlossTM Glossmeter was used for gloss measurements. Pore sizes were determined by mercury porosimetry. Measurements were carried out using an Autopore IV 9500 (Micromeritics Instrument). More details can be found in a

previous paper (Xu et al., 2005).

The papers were printed on a Cerutti rotogravure web press (Cerutti Model 118, Italy), located at Western Michigan University (WMU) Printing Pilot Plant. Commercial toluene-based coated yellow, magenta, and cyan inks for rotogravure (Flint Ink) were used. All inks were doped with a selected tracer.

The ink efflux time with Shell cup #2 was kept at 21 ± 0.5 seconds for all inks. Printing was done at 1000 ft/min with electrostatic assist (ESA) on. The magenta cylinder has elongated cells, while the cyan cylinder has compressed cells.

Количество переданной краски и следовательно количества краски на бумаге было определено различием веса печатного цилиндра до и после печати. Поэтому, эти модели не могут быть применены к поведению красочного слоя других типов красок.

Был изучен новый метод измерения толщины красочного слоя. Краски лакировались с трассирующим снарядом, который использовался, чтобы вычислить массу передачи краски, и следовательно толщину слоя. Этот внутренний метод трассирующего снаряда может использоваться во всех видах красок, включая флексографские и краски для глубокой печати на основе растворителя.

Цели этой работы состояли в том, чтобы использовать внутренний метод трассирующего снаряда, иметь размеры толщин, найти лучшую модель соответствующую экспериментальным данным и изучить коэффициенты регресса.

Эксперимент

В этом эксперименте использовалось пять мелованных бумаг для ротогравюры, приблизительно одного и того же граммажа. Особенности бумаг, указанные в таблице 1:

граммаж, шероховатость печатной поверхности, глянец и пористость были измерены согласно стандартам TAPPI (TAPPI, 1999, 2002). Модель 90 PPS использовалась для измерений пористости и шероховатости. Gardco® Novo-GlossTMGlossmeter использовался для измерений глянца. Размеры поры были определены параметрически. Измерения были выполнены с использованием Автопора IV 9500. Бумаги были запечатаны на машине глубокой печати Сиратти (Модель 118 Сиратти, Италия), расположенной в Западном Мичиганском университете (WMU).

Для печати были использованы голубая, пурпурная и желтая краски на основе толуола. Все краски лакировались отобранным трассирующим снарядом. Вязкость для всех красок составляет 21 ± 0.5 секунды. Печать осуществлялась со скоростью 1000 фут/мин. Пурпурный цилиндр удлинил ячейки, в то время как голубой цилиндр сжал ячейки. Макет печати содержит различные области пурпурных и голубых тонов от 25 % к 100 %. Влажные образцы красок и области тона печатных образцов были проанализированы в Лаборатории Chemisar. Зная количество металла трассирующего снаряда в обоих случаях и напечатанный красочный слой,

The print layout contains different magenta and cyan tone areas from 25% to 100 %. Both wet ink samples and tone areas of printed samples were analyzed at Chemisar Laboratories. By knowing the amount of tracer metal in both the wet ink and printed

толщина красочного слоя может быть вычислена при использовании:

Толщина красочного слоя (gsm) = Трассирующий снаряд в образце печати (gsm) / Трассирующий снаряд в красках (% веса)

Оптические плотности в различных областях тона были измерены по отношению к оптической плотности незапечатной бумаги, используя денситометр X-Rite 530.

Результаты и Обсуждение

Толщина красочного слоя и оптические данные плотности были проанализированы с использованием соответствующей нелинейной программы OriginPro 7.5. Ds или

ink film, the ink film thickness can be calculated by using:

Ink film thickness (gsm) = Tracer in print sample (gsm) / Tracer in ink (wt%) (7)

The optical densities at different tone areas were measured with reference to the optical density of unprinted paper using an X-Rite 530 densitometer.

Results and Discussion

The ink film thickness and optical density data was analyzed using appropriate OriginPro 7.5 nonlinear fitting routines. Equations 1 to 6 were examined. Ds or Rs, m, and n were treated as regression variables. The degree of fit of an equation to the experimental data can be determined by the sum of the square of residuals and the distribution of residuals around zero point. Figure 2 shows respectively the residuals of equations 1 to 6 for ten ink mileage curves of the cyan and magenta colors. The results indicate that threeparameter equations 2 and 4 fit, as expected, the experimental data much better than their two-parameter equations 1 and 3. Both equation 2 and 4 have minimal sum of the square of residuals (0.00887 and 0.00768, respectively) and even distribution of residuals around zero point. The Oittinen model (Equation 2) was found not good enough in previous studies (Chou and Harbin, 1991), but it appears a good fit in this study.

The Oittinen model and Calabro-Savagnone model were used to study the effect of paper characteristics on ink mileage behaviors. The regression coefficients, Ds, m, n, derived from curve fitting for each model are listed in Table 2 and Table 3. Saturation density Ds values derived from Calabro-Savagnone model are higher than those from Oittinen model. Ds values of cyan ink films are, as unexpected, higher than those of magenta ink films. Since these two inks have different rheological and other properties, as well as different cell geometries on gravure cylinders (compressed and elongated), it is not practical to conclude based on one printing trial. More experimental results are needed to compare these two inks. The correlations between paper characteristics and regression coefficients for both models are shown in Table 4 and Table 5. ItisapparentthatforbothcyanРТС, m, и n рассматривали как переменные регресса.