откудаx1 = 7, у1 = 4, х2 = - 4, у2 = -7.
можно расположить так:
Решая полученную систему, имеем
или т.е. ,
откудаx1 = 7, у1 = 4, х2 = - 4, у2 = -7.
Возможна и такая запись:
<=> <=> <=> (x1 = 7, у1 = 4)
(х2 = - 4, у2 = -7)
Пример 10. Расположение формул одна в подбор другой
Например, в тексте
Прямоугольные и сферические координаты точки связаны соотношениями
x = q sin Θ cos φ
y = q sin φ cos Θ
z = q cos Θ .
правильнее записать все формулы в строку:
x = qsinΘcosφ , y = qsinφcosΘ , z = qcosΘ .
Например, текст
Координаты центра тяжести дуги находят по формулам
(1)
(2)
(3)
необходимо расположить следующим образом:
Координаты центра тяжести дуги находят по формулам
(1)
следует записать:
.
Текст
Докажем, что
Оценим выражение
Так как > 0, то 0 < < 0 < <
Можно записать так:
Докажем, что A1 – A2 = α , гдеA1 = A2 =
Оценим выражение A1 – A2 = α.
Так какcosα / ( 1 – sin α ) > 0, то 0< A1 < π / 2и0< A2 < π / 2.
Пример 14. Преобразование текста с целью компактного размещения формул
Текст
Умножив 1-ю строку матрицы
на 3-ю и вычитая ее из 2-ой строки, получаем
Переставив теперь 2-й и 3-й столбцы, имеем
можно более компактно записать так:
Выполним над матрицей следующие преобразования:
Мы умножили 1-ю строку на 3-ю и вычли ее из 2-й, а затем переставили 2-й и 3-й столбцы.
Текст
1. Если С=0, то уравнение принимает вид Ах + Ву = 0. Это уравнение прямой, проходящей через начало координат.
2. Если А=0, то уравнение имеет вид у = -С / В или у = b и выражает уравнение прямой, параллельной оси O x.
3. Если В=0, то уравнение имеет вид x = - C / А или x= а и выражает уравнение прямой, параллельной оси Oy.
4. Если А=С=0, то уравнение примет вид у = 0. Это – уравнение оси Ox.
5. Если В=С=0, то уравнение примет вид x= 0. Это – уравнение оси О y.
можно перевести в следующую таблицу
№ п/п | Значения коэффициентов | Уравнение прямой | Положение прямой |
1. | С=0 | А x + В y = 0 | Проходит через начало координат |
2. | А=0 | y = -С/В = b | Параллельна оси Ox |
3. | В=0 | x = -С/А = а | Параллельна оси О у |
4. | А = С = 0 | у=0 | Совпадает с осью Ox |
5. | В = С = 0 | x=0 | Совпадает с осью Oy |
Пример 17. Использование современной символики
Текст
Если p принадлежит α, то α и p параллельны. Пусть р не принадлежит α. Проведем плоскость β, которая содержит линию пересечения прямых b и q. Так как q принадлежит α (по условию) и q принадлежит β (по построению), то q есть прямая пересечения плоскостей α и β. Допустим, что теорема неверна, т. e. р не параллельна α. Тогда существует точка С пересечения прямой р с плоскостью α.
с помощью использования математической символики примет такой вид:
Если , то pα . Пусть . Проведем . Так как (по условию) и (по построению), то . Допустим, что теорема неверна, т. е.pα. Тогда .
Приложение 8. Разметка формул
Пример 1. Указания о переносах и отбивках
а) между символическим обозначением функции и аргументом:
sin x ; ln y ;
б) между подынтегральной функцией и дифференциалом
xdx; dx .III. Список использованной литературы
Оглавление