Смекни!
smekni.com

Проведение статистического анализа и прогнозирование результатов выпуска изданий Беларуси и России (стр. 2 из 3)

(1.11)

1.3. Теоретические сведения о временных рядах

Временный ряд — это множество наблюдений X(t), полученных последовательно за время t. Анализ временных рядов основан на предположении, что последовательные значения в базе данных фиксируются через определенные промежутки времени. Цели анализа временных рядов (определение природы ряда и прогнозирование) требуют математического описания модели.

Различают детерминированные и случайные временные ряды. Детерминированный ряд — это ряд, значение компонентов которого определяется какой-либо математической зависимостью. Значение компонентов случайного ряда могут быть описаны только с помощью распределения вероятности.

Явления, развивающиеся во времени согласно закону теории вероятности, называются стохастическим процессом. Выделяют два вида стохастических процессов:

1) стационарный. Это процессы, свойства которых не изменяются во времени. Они имеют постоянное математическое ожидание (постоянное среднее значение вокруг, которого варьируются), среднеквадратичное отклонение (определяет разброс компонентов ряда относительно их математического ожидания) и автокорреляцию.

2) динамические. При графическом построении временного ряда результаты наблюдений наносят на график в виде точек и соединяют последовательно ломаной линией. В результате получают линию фактических изменений.

Для определения общих тенденций роста (снижения) показателей временного ряда используют выравнивание (сглаживание), общей картины происходящих процессов и стараются описать их с помощью математических зависимостей.

Сглаживание ряда осуществляется следующими основными способами:

1) методом экспоненциального сглаживания;

2) методом скользящего среднего;

3) методом Брауна;

4) методом среднего темпа;

5) методом регрессионных уравнений.

1.3.1. Метод экспоненциального сглаживания

Метод экспоненциального сглаживания является одним из простейших и распространенных способов выравнивания ряда. Выравнивание осуществляется по следующей формуле:

,
(1.12)

где

— значение экспоненциальной средней в момент времени t;

— параметр сглаживания, принимает значения от 0 до 1;

— параметр сглаживания.
(1.13)

Для расчета первого значения

задается значение
, которое высчитывается по формуле:
(1.14)

Если в формулу (1.12) подставить формулу (1.13), то получится следующее выражение:

(1.15)

Экспоненциальное среднее

имеет математическое ожидание равное математическому ожиданию
, при этом среднеквадратичное отклонение
меньше среднеквадратичного отклонения
.

Чем меньше параметр сглаживания, тем в большей степени сокращается среднеквадратичное отклонение

, т. е. экспоненциальное сглаживание служит как фильтр, формирующий на выходе значение
и предпосылки для прогноза.

Прогноз рассчитывается по формуле:

(1.16)

1.3.2. Метод скользящего среднего

Метод скользящего среднего основан на выравнивании ряда с использованием следующей формулы:

,
(1.17)
,
(1.18)

где

— значение скользящего среднего в момент времени t;

— некоторая величина, характеризующая начальное условие при
;

— значение скользящего среднего в момент времени
;

N — число значений ряда.

1.3.3. Метод Брауна

Метод Брауна основан на использовании адаптивных моделей разного порядка. Адаптивные модели первого порядка основаны на использовании экспоненциальной средней, отличие состоит в выборе

. Начальные условия для расчета:
(1.19)

где

, где

— это шаг.

Расчет производится по следующим формулам:

(1.20)
(1.21)

Прогноз следующего значения ряда вычисляется по следующей формуле:

(1.22)

Для построения графических зависимостей пользуются столбцами значений: х и

.

1.3.4. Метод среднего темпа

При использовании этого метода в расчете учитывается вся информация ряда. Расчет базируется на предпосылке о том, что сумма фактических уровней динамического ряда или суммарный рост за период должен быть равен сумме уровней, полученных расчетным путем исходя из начального уровня ряда и среднего темпа роста (

).

Он производится по формуле:

(1.23)

Расчет уровня ряда:

,
(1.24)

где

.

Расчет проводится путем подбора

при соблюдении следующего условия:
(1.25)

Когда определено значение

, при котором
, найденное значение среднего темпа роста выступает в качестве коэффициента для составления прогноза на будущий срок.

Высчитывается по формуле:

(1.26)

2. Статистический показатель расчетов

временных рядов (корреляция)

Случайной величиной называют величину, которая в результате испытания примет одно и только одно возможное значение, наперед неизвестное и зависящее от случайных причин, которые заранее не могут быть учтены.

Случайная величина называется дискретной, если ее возможные значения можно пронумеровать. Основными формами задания дискретной случайной величины являются: 1) ряд распределения; 2) функция распределения (интегральная функция распределения).

Математическое ожидание дискретной случайной величиныХ называется значение, рассчитанное по формуле

. (2.1)

Математическое ожидание обозначается также mx. Оно приближенно равно среднему возможному значению случайной величины.