Смекни!
smekni.com

Строение атома. Есть ли предел таблицы Менделеева? (стр. 6 из 8)

где t — целые числа.

«Мы видим,—пишет Бор,—что это соотношение объясняет закономер­ность, связывающую линии спектра во­дорода. Если взять t2 = 2 и варьировать t1, то получим обычную серию Бальмера. Если взять t2=3, получим в инфра­красной области серию, которую наблю­дал Пашен и еще ранее предсказал Ритц. При t2=1и t2=4,5,... получим в крайней ультрафиолетовой и соответ­ственной крайней инфракрасной обла­стях серии, которые еще не наблюда­лись, но существование которых можно предположить ».

Действительно, серия в ультрафиолетовой области, соответствующая t2= 1, была найдена Лайманом в 1916 г., серия в инфракрасной области, соответствующая t2=4 была найдена Брэкетом в 1922 г., и серия t2=5 была найдена Пфундом в 1924 г.

Используя известные в то время зна­чения е, т, h, Бор вычислил значение постоянной в спектральной' формуле:

тогда как экспериментальное значение равно 3,290*1015. «Соответствие между теоретическим и наблюдаемым значе­ниями лежит в пределах ошибок изме­рений постоянных, входящих в теорети­ческую формулу», — писал Бор.

После опубликования статей Бора Фаулер обнаружил новые линии при разряде в трубке, заполненной водоро­дом и гелием, которые, по его мнению, не укладываются в серию Бора. Бор уточнил теорию, введя движение ядра и электрона около общего центра массы. Тогда:

в точном соответствии с эксперимен­том.

В последующих работах Бор непре­рывно уточнял основы своей теории. Она была дополнена принципом соот­ветствия (1918), позволяющим делать определенные выводы об интенсив­ности и поляризации спектральных линий.

Сам Бор не­однократно занимался вопросом о вли­янии магнитных и электрических полей на спектры атомов. Он же впервые включил в квантовую теорию атома и рассмотрение рентгеновских спектров, считая, что «характеристическое рент­геновское излучение испускается при возвращении системы в нормальное со­стояние, если каким-либо воздейст­вием, например катодными лучами, были предварительно удалены элект­роны внутренних колец» (1913).

Генри Мозли в 1913—1914 гг. открыл закон смещения длин волн характери­стических лучей, принадлежащих к одной и той же серии, при переходе от элемента к элементу. Частота рентге­новских лучей, определяющая их «жест­кость», возрастает с возрастанием по­рядкового номера элемента.

Первое теоретическое истолкование рентгеновских спектров на основе идей Бора состоит в том, что они обязаны переходам электронов на вакантные места во внутренних оболочках. Оно бы­ло дано Зоммерфельдом в его фунда­ментальной работе 1916 г. В том же 1916 г. П. Дебай и П. Шеррер разработа­ли новую методику рентгеновского ана­лиза кристаллов в порошке, получив­шую широкое распространение в рентгеноструктурном анализе.

Идеи Бора получили эксперимен­тальное подтверждение в опытах Джеймса Франка (1882—1964) и Густава Герца, которые начиная с 1913 г. изучали соударения электронов с атомами паров и газов. Оказалось, что электрон может сталкиваться с атомами газов упруго и неупруго. При упругом ударе электрон отскакивает от тяжелого атома (напри­мер, ртути), не теряя энергии, при не­упругом ударе его энергия теряется и передается атому, который при этом либо возбуждается, либо ионизирует­ся. Порции энергии, затрачиваемые на возбуждение атома, вполне определен­ные: так, электрон при столкновении с атомами ртути теряет энергию 4,9 эВ, что соответствует энергии кванта ультра­фиолетового света длиной волны 2537 А.

Квантовый характер поглощения энергии атомом был продемонстриро­ван в опытах Франка, Герца и других физиков с поразительной нагляд­ностью. За эти исследования, которые продолжались ряд лет, в 1925 г. Франк и Герц были удостоены Нобелевской премии.

Квантовый характер излучения и по­глощения энергии атомом лег в основу теоретического исследования о свето­вых квантах, выполненного Эйнштей­ном в 1916—1917 гг. В этом исследо­вании Эйнштейн вывел формулу Планка, исходя из представления о на­правленном излучении. Атом излучает и поглощает энергию квантами. Выстреливая квант в определенном направлении, атом сообщает ему не только энергию hv , но и импульс

.

При излучении молекула газа переходит из энергетического состояния Zm c энер­гией em в состояние Zn с энергией en излучая энергию em - en. Поглощая такую же энергию, молекула переходит из состояния Zn в состояние Zm. Моле­кула может перейти из состояния Zm в состояние Zn самопроизвольно, спон­танно. Вероятность такого перехода за время dt пропорциональна этому про­межутку времени dt:

Но, кроме этого спонтанного перехода, впервые введенного Бором при объя­снении спектров, по Эйнштейну, для молекул и атомов, находящихся в свето­вом поле, возможны индуцированные переходы под действием светового излучения. Вероятность такого «ин­дуцированного излучения»:

где p —объемная плотность световой энергии. Точно так же вероятность по­глощения энергии молекулой, находя­щейся в состоянии Zn и перехода ее на высший энергетический уровень Zm будет:

В равновесном состоянии атом в среднем столько же поглощает энергии, сколько и излучает. Поэтому:

где по закону статистики Больцмана число молекул, находящихся в состоя­нии Zn, пропорционально:

Из предыдущего равенства получается:

Положим ет — en =hv, для высоких частот, применяя закон Вина, получим формулу Планка:

Идея Эйнштейна об индуцирован­ном излучении нашла в современной физике и технике важное применение в лазерах.

Как было уже сказано, в 1916 г. Зоммерфельд обобщил теорию Бора, введя правила квантования для систем с не­сколькими степенями свободы в виде

.

Он рассмотрел движение по эллип­су, введя азимутальные и радиальные квантовые числа. Введя далее простран­ственное квантование и третье кванто­вое число, он дал теорию нормального эффекта Зеемана. Наконец, он дал те­орию тонкой структуры спектральных линий и объяснение рентгеновских спектров. Все эти результаты были по­дробно разработаны им в классической монографии «Строение атомов и спект­ры», первое издание которой вышло в 1917 г. До 1924 г. включительно эта книга выдержала четыре издания. Последнее издание ее уже в двух томах вышло в 1951 г. и русский перевод— в 1956 г.

Таким образом, к 1917 г. идеи Бора получили всестороннее развитие как в работах самого Бора, так и других авто­ров. Они были экспериментально под­тверждены, и теория Бора получила всеобщее признание. Но те трудные во­просы, которые были поставлены Резерфордом, еще не были сняты, а многие трудности, с которыми сталкивалась теория в попытках рассмотреть много­электронные атомы, аномальный эффект Зеемана и многое другое, пока­зали, что в теории Бора при всех ее успехах есть серьезные недостатки принципиального характера. Трудности и противоречия накопились, и надо было искать выход.

Возникновение квантовой механики (1925— 1930 гг)

Трудности теории бора

Теория Бора с самого начала вызы­вала многие вопросы, остававшиеся без ответа. Эти вопросы были постав­лены Резерфордом еще при обсужде­нии рукописи его первой статьи. Как понимать сочетание идей Бора и классической механики, в кото­рой нет места для квантовых скачков, и откуда электрон знает, на какую орби­ту ему следует перескакивать?

В 1896 г. голландский физик Питер Зееман (1865—1943) произвел опыт, который пытался осуществить еще Фарадей. Пламя натриевой горелки он помещал между полюсами электромаг­нита и наблюдал в спектроскоп ее спектр. По оси электромагнита был просверлен канал, так что явление можно было наблюдать не только пер­пендикулярно силовым линиям поля (поперечный эффект), но и вдоль поля (продольный эффект). При на­блюдении поперек поля, кроме линии с частотой колебаний vo, равной часто­те колебаний в отсутствие поля, на­блюдались две линии с частотами v1=v0-Dv и v2=v0-Dv. Все три линии линейно поляризованы. Несмещенная линия соответствует колебаниям вдоль силовых линий, смещен­ные — колебаниям, перпендикулярным силовым линиям. При наблюдении вдоль поля несмещенная компонента отсутствует, смещенные линии поляризованы по кругу в проти­воположных направлениях.

Лоренц в 1897 г. дал простую теорию эффекта, исходя из представлений, что в атомах электроны совершают круго­вые движения с циклической часто­той w0. В магнитном поле на них дей­ствует сила Лоренца и частота обра­щения изменяется на величину Dw, рав­ную приближенно:

Лармор (1857-1942) в 1899 г. интер­претировал действие магнитного поля как действие поля тяжести на волчок. Волчок прецессирует вокруг направле­ния силы тяжести с угловой частотой Dw. Точно так же вращающиеся электроны в атоме прецессируют вокруг силовых линий магнитного поля с круговой частотой

.