Смекни!
smekni.com

Строение атома. Есть ли предел таблицы Менделеева? (стр. 2 из 8)

Войны Александра Македонского изменили лицо древнего мира и при­вели в соприкосновение греческую и восточную цивилизации. Из этого кон­такта возник сплав культуры, игра­ющий большую роль в мировой истории.

В истории науки и культуры древ­него мира начался новый период, полу­чивший название эллинистического, продолжавшийся от образования эллинистических госу­дарств (конец IV—начало III в. до н.э.).

Последним блестящий представитель афинской науки был Эпикур (341—270 гг. до н. э.), развивший учение Демокрита о при­роде.

Учение Эпикура о природе основано на концепции атомов Демокрита, но несколько отличном. Значителен размах атомной теории. Существованием атомов Эпи­кур, а за ним и Лукреций пытаются объяснить все естественные, психиче­ские и социальные явления. Само представление об атомах выводится из хорошо известных фактов. Так, белье сохнет потому, что под действием солнца и ветра от него отрываются невидимые частицы воды, рука медной статуи у городских ворот, к которой прикасаются в поцелуе губы входя­щих в город, заметно тоньше по сравнению с другой рукой, так как при поцелуе губы уносят частицы меди.

Атомы находятся в беспорядочном движении, и Лукреций рисует модель движения атомов, уподобляя его дви­жению пылинок в солнечном луче, ворвавшемся в темную комнату. Это первая в истории науки картина моле­кулярного движения, написанная древним автором. Само хаотическое движение атомов Эпикур объясняет иначе, чем Демокрит. Эпикур не признает различия в ско­рости падения малых и больших ато­мов; в пустом пространстве все частицы движутся с одинаковой скоростью. Но в некоторые моменты самопроиз­вольно возникают случайные небольшие отклонения той или иной частицы от прямолинейного пути. Эти отклонения Эпикур считал необходимыми, чтобы объяснить свободную волю людей, так что атомы как бы также обладают некоей «свободой воли».

Гениальные догадки древних атомистов предопределили будущий успех атомной теории материи.

Атомистика Эпикура — Лукреция продолжала линию научного развития доаристотелевского периода. Но атомистика послеаристотелевской эпохи носит и существенно новые черты: она более конкретна, более «физична», чем теория Аристотеля и атомистика Демокрита. Атомы Де­мокрита по существу чисто геометри­ческие образы, они характеризуются только формой и объемом. У Эпикура и Лукреция атомы обладают весом, плотностью (твердостью) и, наконец, внутренней способностью к само­произвольным отклонениям от пря­молинейного движения.

Естествознание в эту эпоху стало переходить из сферы отвлеченно­го, философского размышления о природе в сферу конкретных фактов и явлений.

Евклид (жил в III в. до н.э.) подыто­жил и систематизировал математичес­кие знания своих предшественников, из коих его учителем был знаменитый ученый Евдокс Книдский. «Начала» Евклида представляют собой изложе­ние той геометрии, которая известна и поныне под названием евклидовой геометрии.

Евклидово пространство пустое, безгра­ничное, изотропное, имеющее три измерения. Евклид придал мате­матическую определенность атомис­тической идее пустого пространства, в котором движутся атомы. Простей­шим геометрическим объектом у Ев­клида является точка, которую он определяет как то, что не имеет частей. Другими словами, точка— это неделимый атом пространства.

Дальнейшее развитие атомистики (XIX в.)

Всеобъемлемость принципов термо­динамики, открытых и разработанных к этому времени и, в частности, второго начала, заставляла физиков-теоретиков искать причины универсальной мощи термодинамики.

В результате в науке возникли два направления: феноме­нологическое и атомистическое. Фено­менологическое направление не счи­тало необходимым искать более глубо­ких причин физических процессов, оно ограничивало задачу изучения приро­ды описанием явлений на основе экс­периментально установленных принци­пов. Энергетики Гельм, Оствальд и другие считали энергию основным по­нятием науки, а такие понятия, как «ма­терия», «сила», производными и даже излишними.

Что касается представления об ато­мах и молекулах, то энергетики, а так­же венский физик Эрнст Мах, один из видных сторонников феноменологи­ческого направления, считали эти пред­ставления продуктами чистой фанта­зии, аналогичными представлениям о ведьмах и привидениях.

Однако такие видные представители науки, как Клаузиус, Максвелл, а затем Больцман, с успехом разрабатывали молекулярно-кинетическую теорию.

Максвелл, Клаузиус, Больцман, Гиббс, развивая физическую атомистику, иска­ли законы, управляющие поведением коллектива атомов и молекул, делая по возможности простые гипотезы о строе­нии самих атомов. В XIX в. единствен­ным средством наблюдать взаимодей­ствия атомов и определять их индивиду­альные особенности были химические реакции. Именно в недрах химической атомистики родилась первая гипотеза о строении всех атомов из атомов водо­рода (Проут, 1815).

В 1859 г. было сделано важное открытие в оптике, физик Густав Кирхгос (1824-1887) и химик Роберт Бунзен (1811—1899) открыли спектральный ана­лиз, давший в руки химикам новое мощное средство исследования.

Периодический закон. Есть ли граница системы элементов Менделеева?

В 1869 г. уже было известно 63 химических элемента. В этом же году Д.И.Менделеев открыл фундаменталь­ный закон распределения элементов в систему, которую он назвал периоди­ческой системой химических элементов.

До этого на протяжении более ста лет в научном мире господствовала картина мира, которую вполне выразил 1808 году своим трудом «Новая система химической философии» Джон Дальтон.

Уже было известно, что водород, кислород, сера и другие вещества – простые тела состоят из атомов одного сорта, а вода, аммиак, углекислый газ и др. – сложные, созданы комбинацией атомов разных веществ. Это вполне подтверждалось опытами того времени.

Химические реакции, по Дальтону, заключаются в том, что атомы вступают друг с другом в разные комбинации, образуя «сложные атомы» (молекулы), затем эти молеку­лы распадаются, образуются новые молекулы и т. д., по­добно тому как танцоры, переходя от одного танца к другому; образуют новые комбинации. Но сами атомы при этом остаются неизменными и вечными: меняется только их распределение.

«Каждая частица воды,— гово­рит Дальтон в своей „Химической философии",— в точ­ности похожа на любую другую частицу воды; каждая частица водорода в точности похожа на любую другую частицу водорода и т. д. Химическое разложение и хи­мическое соединение означают лишь то, что атомы уда­ляются друг от друга или же снова сцепляются вместе. Но химик не способен уничтожить материю или создать ее вновь. Пытаться создать или уничтожить хотя бы один атом водорода так же безнадежно, как пытаться приба­вить еще одну планету к Солнечной системе или уничто­жить какую-нибудь из существующих планет. Все, что мы можем сделать,— это разъединить атомы, соединив­шиеся или сцепившиеся друг с другом, или же соеди­нить те атомы, которые сейчас находятся на большом расстоянии друг от друга».

«Химическая философия», изложенная в этих строках Дальтона, действительно стала философией целого ряда поколений химиков и физиков. Невозможность создания хотя бы одного нового атома данного химического эле­мента, невозможность превращения одних атомов в дру­гие — все это было необходимым выводом из всего огром­ного опытного материала, на котором основывалась науч­ная химия.

В этом пункте Дальтон не совсем сходился с Бойлем, который в 1661 году писал, что хотя атомы остают­ся неизменными при всех химических явлениях, но тем не менее когда-нибудь будет найден некий «сильный и тонкий агент», с помощью которого удастся разбить атомы на более мелкие части и превратить одни атомы в дру­гие.

Эта мысль Бойля казалась Дальтону чистой фантази­ей: ни один химический факт не указывал на то, что атомы возможно разбивать на части и превращать друг в друга.

В 1816 грду неожиданно нашелся один сторонник Бойля, пытавшийся под­твердить ее фактами. Это был Уильям Праут, который напечатал в жур­нале «Философские анналы» статью, где обращал особенное внимание на тот факт, что все атомные массы, которые определил Дальтон, выража­ются целыми числами. Это — очень замечательный факт, говорил Праут, ведь если бы атомы всех химических эле­ментов были первичными, основными частицами, подлин­ными «кирпичами мироздания», неразложимыми на частя и нисколько не связанными друг с другом, то какая могла бы быть причина того, что атом азота ровно в пять раз превосходит по массе атом водорода, а атом кислоро­да — ровно в семь раз?

Мнение Праута вот ка­кое: атом азота, который, по Дальтону, ровно в пять раз превосходит по массе атом водорода,— это и есть пять атомов водорода, очень тесно сцепленных друг с другом; атом кислорода — это семь атомов водорода, тесно сцеп­ленных друг с другом; атом ртути—это 167 тесно при­жавшихся друг к другу водородных атомов и т. д. Выходит, что все на свете состоит в конечном счете из водо­рода.

А чем же объяснить, что все-таки в химических опытах никак не удается, например, разложить кислород на водород? Очень просто, отвечает Праут, все дело в том, что когда семь атомов водорода сцепляются, чтобы образовать атом кислорода, то они сцепляются гораздо теснее, чем тогда, когда, например, атом водорода и атом кислорода сцепляются, чтобы образовать молекулу воды. Поэтому-то в химических опытах и удается разложить мо­лекулу воды на атом водорода и атом кислорода, но ни как не удается разложить атом кислорода на семь атомов водорода.

Статья Праута была очень убедительна,— многие по­верили в то, что водород есть действительно «первичное вещество», из которого состоит все на свете. Одна только была беда — те химические анализы, основываясь на ко­торых Дальтон вычислил свои атомные массы, были очень уж неточны. Если провести анализы тщательнее и вычис­лить атомные массы точнее, то окажутся ли они по-преж­нему целыми числами?