Смекни!
smekni.com

Проявление симметрии в различных формах материи (стр. 5 из 10)

Симметрия кристаллов проявляется не только в их структуре и свойствах в реальном трехмерном пространстве, но также и при описании энергетического спектра электронов кристалла, при анализе процессов дифракции нейтронов и дифракциииэлектронов в кристаллах с использованием обратного пространства.


Кристаллу может быть присуща не одна, а несколько операций симметрии. Так, кристалл кварца (рис.1,а) совмещается с собой не только при повороте на 120°вокруг оси 3 (операция g1), но и при повороте вокруг оси 3 на 240° (операция g2), а также при поворотах на 180° вокруг осей 2x, 2y, 2w(операции g3, g4, g5). Каждой операции симметрии может быть сопоставлен элемент симметрии – прямая, плоскость или точка, относительно которой производится данная операция. Например, ось 3 или оси 2x, 2y, 2w являются осями симметрии, плоскость m (рис.1,б). – плоскостью зеркальной симметрии и т.п. Совокупность операций симметрии {g1, g2,…,gN} данного кристалла образует группу симметрии GÎ (g1,g2,…gN) в смысле математической теории групп. Последовательность проведения операций симметрии также является операцией симметрии. В теории групп это обозначается как произведение операций:g1g2=g3. Всегда существует операция идентичности g0, ничего не изменяющая в кристалле, называемая отождествлением, она геометрически сооответствует неподвижности объекта или повороту его на 360° вокруг любой оси. Число операций, образующих группу, называется порядком группы.Для описания кристаллов используют различные группы симметрии, из которых важнейшими являются точечные группы симметрии, описывающие внешнюю форму кристаллов; их называют также кристаллографическими классами; пространственные группы симметрии, описывающие атомную структуру кристаллов.

Точечные группы симметрии. Операциями точечной симметрии являются: повороты вокруг оси сим­метрии порядка N на угол, равный 360°/ N (рис. 2, а);отражение в плоскости симметрии т (зеркальное отражение, рис. 2,б); инверсия 1 (сим­метрия относительно точки, рис.2,в); инверси­онные повороты N (комбинация поворота на угол 360° с одновременной инверсией, рис. 2, г).


Вместо инверсионных поворотов иногда рассматриваются экви­валентные им зеркальные повороты N. Геометрически возможные сочетания операций точечной симметрии определяют ту или иную точечную группу симметрии, к-рая изображается обычно в стереографической проекции. При преобразованиях точечной сим­метрии по крайней мере одна точка объекта оста­ётся неподвижной — преобразуется сама в себя. В ней пересекаются все элементы симметрии, и она является центром стереографической проекции. Примеры кристаллов, относящихся к различным точечным группам, даны на на рис.3.


В кри­сталлах ввиду наличия кристаллической решётки возможны только операции и соответственно оси симметрии до 6-го порядка (кроме 5-го; в кристаллической решётке не мо­жет быть оси симметрии 5-го порядка, т. к. с помощью пятиугольных фигур нельзя заполнить пространство без промежутков).

Для описания точечной группы симметрии достаточ­но задать одну или несколько порождающих её операции сим­метрии, остальные её операции (если они есть) возник­нут в результате взаимодействия порождающих.

Группы, содержащие лишь повороты, описывают кристаллы, состоящие только из совместимо равных частей (группы 1-го рода). Группы, содержащие от­ражения или инверсионные повороты, описывают кри­сталлы, в которых есть зеркально равные части (группы 2-го рода). Кристаллы, описываемые группами 1-го ро­да, могут кристаллизоваться в двух энантиоморфных формах («правой» и «левой», каждая из к-рых не содер­жит элементов симметрии 2-го рода), по зеркально-рав­ных друг другу

Группы симметрии кристаллов несут в себе геометрический смысл: каждой из опе­раций giÎG соответствует, например, поворот вокруг оси симметрии, отражение в плоскости. Некоторые точечные группы в смысле теории групп, учитывающей лишь пра­вила взаимодействия операций gi gi = gi в данной груп­пе (по не их геометрический смысл), оказываются одинаковыми, или изоморфными друг другу.

Точечные группы описывают симметрию не только кристаллов, но любых конечных фигур. В живой при­роде часто наблюдается запрещённая в кристаллогра­фии точечная симметрия с осями 5-го, 7-го порядка и выше.

Предельные группы. Функции, которые опи­сывают зависимость различных свойств кристалла от направления, имеют определённую точечную симмет­рию, однозначно связанную с группой симметрии огранения кристалла. Она либо совпадает с ней, либо выше неё по симметрии.

В отношении макроскопических свойств кристалл может описываться как однородная непрерывная среда. Поэ­тому многие из свойств кристаллов, принадлежащих к тем или иным точечным группам симметрии, описывают­ся т. н. предельными точечными группами, содержащими оси симметрии бесконечного порядка, обозначаемые символом ∞. Наличие оси ∞ означает, что объект совмещается с собой при повороте на любой, в том числе бесконечно малый угол. Зная группу кристаллов, можно указать возможность наличия или отсутствия в нем некоторых физических свойств.

Пространственные группы симметрии.

Пространственная симметрия атомной структуры кристаллов описывается пространственными группами симметрии G². Они называются также фёдоровскими в честь нашедшего их в 1890 Е. С. Фёдорова; эти группы были независимо выведены в том же году А. Шёнфлисом. В противоположности точечным группам, которые были получены как обобщение закономерностей форм кристаллических многогранников пространственные группы явились продуктом математическо-геометрической теории, предвосхитившей экспериментальные определения структуры кристаллов с помощью дифракции рентгеновских лучей.

Характерными для атомной структуры кристаллов операциями являются 3 некомпланарные трансляции а, b, с, к-рые задают трёхмерную периодичность кристаллической решётки. Кристаллическая решётка рассматривается как бесконечная во всех трёх измерениях. Такое математическое приближение реально, т. к. число элементарных ячеек в наблюдаемых кристаллах очень велико. Перенос структуры на векторы а,bили любой вектор t=p1a + p2b + p3c, где p1, p2, p3 - любые целые числа, совмещает структуру кристалла с собой и, следовательно, является операцией симметрии (трансляционная симметрия).

Физическая дискретность кристаллического вещества выражается в его атомном строении. Пространственные группы G² - это группы преобразования в себя трёхмерного однородного дискретного пространства. Дискретность заключается в том, что не все точки такого пространства симметрически равны друг другу, например атом одного и атом другого сорта, ядро и электроны. Условия однородности и дискретности определяет тот факт, что пространственные группы - трёхмерно периодические, т. е. любая группа G² содержит подгруппу трансляций T - кристаллич. решётку.

Вследствие возможности комбинирования в решётке трансляций и операций точечной симметрии в группах G² кроме операций точечной симметрии возникают операции и соответствующие им элементы симметрии с трансляц. компонентой - винтовые оси различных порядков и плоскости скользящего отражения (рис. 2, д, е)

Если задать внутри элементарной ячейки какую-нибудь точку x (x1 x2 x3), то операции симметрии преобразуют её в симметрично равные ей точки во всём кристаллическом пространстве; таких точек бесконечное множество. Но достаточно описать их положение в одной элементарной ячейке, и эта совокупность уже будет размножаться трансляциями решётки. Совокупность точек, выводимых из данной операциями gi группы G - x1, x2,…, xn-1, наз. Правильной системой точек (ПСТ).

Для каждлй пространственной группы имеются свои совокупности ПСТ. Правильная система точек общего положения для каждой группы одна. Но некоторые из ПСТ частного положения могут оказаться одинаковыми для различных групп.

Роль пространственных групп симметрии кристаллов. Пространственные группы симметрии кристаллов - основа теоретич. кристаллографии, дифракционных и иных методов определения атомов структуры кристаллов и описания кристаллических структур.

Дифракционная картина, получаемая методом рентгенографии, нейтронографии или электрографии,позволяет установить симметрийные и геом. Характеристики обратной решётки кристалла, а следовательно и самой структуры кристалла. Так определяют точечную группу кристалла и элементарную ячейку; по характерным погасаниям (отсутствие определённых дифракционных рефлексов) определяют тип решётки Браве и принадлежность к той или иной пространственной группе. Размещение атомов в элементарной ячейке находят по совокупности интенсивностей дифракционных рефлексов.

Большую роль играют пространственные группы в кристаллохимии. Определено более 100 тыс. кристаллических структур неорганических, органических и биологических соединений. Любой кристалл относится к одной из 230 пространственных групп. Оказалось, что почти все пространственные группы реализованы в мире кристаллов. Хотя одни из них встречаются чаще, другие реже.

В теоретической кристаллографии пространственные группы позволяют развить теорию разбиения пространства на равные области, в часности полиэдрические.

Обобщённая симметрия.

В основе определения симметрии лежит понятие равенства (1,б) при преобразовании (1,а). Однако физические (и математические) объект может быть равен себе по одним признакам и не равен по другим. Например, распределение ядер и электронов в кристалле антиферромагнетика можно описать с помощью обычной пространственной симметрии, но если учесть распределение в нём магнитных моментов то “обычной”, классической симметрии уже недостаточно. К подобного рода обобщениям симметрии относятся антисимметрия и цветная симметрия.