Основной вывод, неизбежно следующий из рассмотрения свойств одно-, дву-, трех-,четырех-,…,n-мерных континуумов, семиконтинуумов и дисконтинуумов, - это вывод о бесконечном – количественном и качественном разнообразии и одно- и двусторонних превращениях, переходах одних реальных пространств и времен в другие.
Эти же выводы подтверждаются и общей теорией относительности, согласно которой в «большом» – в масштабах Метагалактики – реальное пространство- время глубоко неоднородно и неизотропно, хотя в «малом» (например, в масштабах Солнечной ситемы) это пространство-время псевдоевклидово. Однако это подход к малому пространству и времени только с одной точки зрения. Тоже малое даже в бесчисленном множестве «совсем малых» пространств и времен, если его рассматривать уже с позиции геометрической симметрии, вернее кристаллографических аспектов, обнаруживает также бесконечное разнообразие Материалы о плоских и трехмерных реальных континуумах, семиконтинуумах и дисконтинуумах доказывают это совершенно строго.Приведем новые подтверждения развиваемых здесь положений из области квантовой физики твердого тела.
Известно, что все атомы правилбной кристаллической решетки в некотором приближении одинаковы. Они подобны музыкальным струнам, настроенным на одну и ту же частоту, и вследствие этого при возбуждении колебаний в одном из них способны резонировать, что приводит к волне, бегущей через весь кристалл. Природа этих волн может быть очень разнообразной - звуковой, магнитной, электрической и т.д. Согласно общим законам квантовой механики, эти волны возникают и передаются только в виде квантов энергии. Последние во многом аналогичны обычным частицам, и их называют квазичастицами. Поскольку природа их определяется структурой и химическим составом кристаллов, то их разнообразие значительно более широко, чем разнообразие истинных частиц.Сейчас известны такие квазичастицы, как фотоны (кванты звука), электроны проводимости, магноны (спиновые волны), эквитоны, поляритоны (светоэкзитоны) и многие дручие. Важность введения квазичастиц в теорию твердого тела состояла в том, что во многих случаях кристалл оказалось возможным трактовать с позиций невзаимодействующих или слабо взаимодействующих квазичастиц.
Известно, что механику истинных частиц пронизывает принцип относительности, выраженный лоренцовыми преобразованиями. Этот принцип выражает однородность, изотропность пространства и однородность времени, с которыми связаны разные законы сохранения. Это проявляется также и в универсальности для механики всех истинных частиц зависимости энергии E от импульса p: __________
Е=√ E +c p
Где Е т с -энергия покоя, т – масса поко, с – скорость света в вакууме.
Если с/м<<c, то есть вне релятивистской области, то Е=р /2т.
Это обычный квадратичный закон дисперсии.
Однако с переходом к квазичастицам положение радикально меняется! И это прямо связано с резко иным характером малых кристаллических пространств по сравнению с «пустым» пространством малого. Очень четко и интересно резюмируют результаты такого перехода И.М. Лившиц и В.М. Агранович. Они пишут, что для квазичастиц положение радикально меняется, потому что «квазичастицы не в пустом пространстве,, не в вакууме, а в кристаллическом пространстве, которое имеет симметрию, отвечающую соответствующей пространственной группе кристалла. В связи с этим имеется выделенная система отсчета и нет прежнего принципа относительности. Поэтому нет и закона дисперсии, который имеет место для истинных частиц. Вместо этого возникает сложный закон дисперсии Е=Е(р), причем вместо импульса приходится говорить о квазиимпульсе, ибо пространство уже неоднородно и закон сохранения импульса, который является точным законом в однородном пространстве, в кристаллическом пространствевыполняется с точностью до целочисленного вектора обратной решетки, умноженной на h.
Закон дисперсии для квазичастиц существенно отличается от элементарного закона Е=р /2т. Во-первых, Е(р) – периодическая функция р с периодом, равным периоду обратной решетки, умноженному на h. Во- вторых, имеется, вообще говоря, резкая анизотропия этого закона дисперсии и, следовательно, анизотртпия всех свойств, определяемых квазичастицами»ю
Далее. Для истинных частиц в зависимости Е=р /2т каждому Е соответствуют поверхности, называемые поверхностями Ферми. В данном случае это просто сферы, радиус которых растет пропорционально √Е. Для квазичастиц уже в пространстве квазиимпульсов функции Е=Е(р) при каждом заданном Е соответствует периодически повторяющийся набор поверхностей Ферми, которые иногда могут смыкаться в одну поверхность, проходящую через все пространство. Придавая Е различные значения и изображая графически в итоге всю функцию Е= Е(р), можно передать рисунком все черты динамики квазичастиц. Получающиеся при таком подходе изображения топологически очень сложны и чрезвычайно напоминают абстрактные скульптуры. Они резко отличаются от примитивных по форме сфер.
Подобно истинным частицам одни из квазичастиц подчиняются статистике Бозе- Эйнштейна и являются, стало быть, бозонами, другие – Ферми-Дирака и являются фермионами.Но не всегда статистика квазичастиц совпадает со статистикой истинных частиц. Так, в системе электронов имеются квазичастицы-плазмоны, являющиеся бозонами, хотя, как известно, свободные электроны являются фермионами.
2.КРИСТАЛЛЫ
2.2.1. История познания кристаллографической симметрии
Под кристаллографической симметрией в узком, или точном, смысле обычно понимают такую симметрию (кристаллов), группы которой могут быть полностью описаны с помощью простых, винтовых и зеркальных осей 1,2,3,4 и 6-го порядка оси переносов и плоскости скользящего отражения. При этом трансляции, связанные с плоскостями скользящего отражения и винтовыми осями, часто представляются конечными.
Кристаллографическая, или структурная, симметрия в широком смысле от этих ограничений освобождена. Она включает первую как свой частный случай и стало быть в принципе может быть представленагруппами и симметрией, опивываемыми простыми, зеркальными и винтовыми осями любых, в том числе 5,7,8,…,∞ порядков, а также осями переносов и плоскостями скользящего отражения.
В истории познания Кристаллографической симметрии следует остановиться на трех моментах, характеризующих диалектичность процесса познания.
Во-первых, познание симметрии кристаллов и кристаллографической симметрии шло по спиралям путем отрицания отрицания. Именно: от живого созерцания – блещущей внешней формы кристаллов – к абстрактному мышлению – их внутреннему решетчатому строению, а от него, с одной стороны, к практике – к величайшему использованию кристаллов в производстве и в быту, с другой- снова к внешней форме кристаллов, но увиденной уже и изнутри.
Во-вторых, в познании кристаллографической симметрии весьма интересна сама история названия этого вида симметрии.Учение о ней, первоначально возникнув вне связи с изучением кристаллов, а затем тесно с ним переплетаясь и получив свое наименование, решительно вышло — не без старания самих кристаллографов — за рамки чисто «кристаллического» представления о симметрии. И здесь снова шел сложный диалектический процесс познания.
Третий момент отмечен В. И. Вернадским: «Кристаллография, — пишет он, — стала наукой только тогда, когда первые основатели кристаллографии в XVII в. Гульельмини и Стеноп, а главным образом в XVIII в. Роме де Лиль, Гаюи правильно приняли за основу построения научного исследования одно свойство природных кристаллов как основное и оставили без внимания отклонения в наружной форме кристаллов от идеальных многогранников геометрии как вторичные. Этим единым исходным свойством был принят правильно закон постоянства гранных углов, открытый независимо Гульельмини и Стснсепом, так называемый закон Стенопа. Вторичными свойствами явились размеры и форма кристаллических плоскостей и ребер кристаллических многогранников. Исходя из этого построили реальные полиэдры—модели природных кристаллов, в которых ребра и плоскости, теоретически являющиеся функцией гранных углов, выявились в своей реальной величине и форме, нарушенных в природных кристаллах проявлением поверхностных сил.
Эти силы оставлены были вначале без внимания.
Так получились идеальные полиэдры геометрии. Такие полиэдры были впервые построены Роме де Лилем в XVIII столетии. Они называются кристаллическими многогранниками». Идеальные по своей форме кристаллы стали рассматриваться как... реальные с истинной симметрией, а отклоняющиеся от них — как ложные с искаженной симметрией. Первые в природе встречаются один на одну или даже несколько тысяч, с большим трудом их удается получить в лабораторных условиях. Вторые составляют, если можно так выразиться, сверхподавляющую часть природных кристаллов. Они легко получаются в лабораторных условиях.
Результат такой ориентации известен: на протяжении столетий наиболее часто встречающиеся, а потому поистине реальные «ложные» кристаллы с искаженной симметрией оставались вне поля зрения кристаллографов, что отрицательно сказалось на общем уровне учения о реальных кристаллах, Се.ичас положение выправляется. И все же в таких поворотах внимания кристаллографов было некоторое оправдание: невозможно изучать само отклонение, не зная того, от чего оно отклоняется...