Всем сказанным мы хотели бы привлечь внимание биологов, физиков, философов, математиков к проблеме динамической биосимметрии и биологических законов сохранения. Ввиду исключительного значения. последних для познания природы жизни необходимы энергичные поисковые работы в этом направлении, Можно надеяться, что на основе биологических законов сохранения, разнообразных инвариантов, симметрии законов живой природы относительно тех или иных преобразований рано или поздно удастся глубже проникнуть в сущность живого, объяснить ход эволюции, ее вершины, тупики, предсказать неизвестные сейчас ветви, теоретически возможные и действительные числа типов, классов, семейств... организмов. И вообще нужно проанализировать вопрос о том, нельзя ли эволюцию материи в целом и внутри отдельных ее форм представить как групповые преобразования, найти их инварианты я на основе последних определить все возможные варианты эволюции в целом и в частностях, предсказать возможные ее ветви—число, характер и т. д. Таким образом, развитый здесь подход дает возможность поставить вопрос о неединственности той картины.
III.ЗАКЛЮЧЕНИЕ
Выявление различных симметрий в природе, а иногда и постулирование их стало одним из методов теоретического исследования свойств микро-, макро- и мегамира. Возросла в связи с этим роль весьма сложного и абстрактного математического аппарата – теории групп –наиболее адекватного и точного языка для описания симметрии. Теория групп – одно из основных направлений современной математики. Значительный вклад в ее развитие внес французский математик Эварист Галуа.
С помощью теории групп русский минеролог и кристаллограф Е.С.Федоров решил задачу классификации правильных пространственных систем точек – одну из основных задач кристаллографии. Это исторически первый случай применения теории групп непосредственно в естествознании.
Существенное ограничение об однородном и изотропном пространственном распределении материи во Вселенной, налагаемое на уравнения общей теории материи и составляющее основу космологического принципа, позволило А.А. Фридману предсказать расширение Вселенной
Анализируя роль принципов инвариантности современный американский физик-теоретик Э. Вигнер, лауреат Нобелевской премии 1963 г., показавший эффективность применения теории групп в квантовой механике, выделил ряд ступеней в познании, поднимаясь на которые мы глубже и дальше обозреваем природу, лучше ее понимаем. Вначале в хаосе повседневных фактов человек замечает некоторые импирические закономерности. Затем, выделяя общие свойства природных явлений и анализируя их связи, он формулирует математические законы природы, учитывая при этом начальные условия, которые могут иметь любой, даже случайный характер. Наконец, синтезируя уже известные законы, находят ряд принципов, позволяющих дедуктивным путем определить уже известные и пока неизвестные утверждения, предсказывающие те или иные физические процессы и явления
Функция, которую несут принципы симметрии, по утверждению Э. Вигнера, состоит в наделении структурой законов природы или установлении между ними внутренней связи, так как законы природы устанавливают структуру или взаимосвязь в мире явлений. Так создаются теориии, охватывающие широкий круг физических явлений и процессов.
IV.Список литературы:
1.Урманцев Ю.А. Симметрия природы и природа симметрии
М.:Мысль,1974.
2.Компанеец А.С. Симметрия в микро- и макромире.М.:Наука,
1978.
3.Химическая энциклопедия.М:Большая российская энциклопедия,1996.
4.Физическая энциклопедия.т.4,М.:Большая российская энциклопедия,1994.
5.Сонин А.С.Постижение совершенства (симметрия, асимметрия, диссимметрия, антисимметрия).М.:Знание,1987.
6.Карпенков С.Х. Концепции современного естествознания.М.:”ЮНИТИ”,1997
Государственный Университет Управления
Институт Национальной и Мировой Экономики
Специальность Национальной Экономики
На тему
Выполнен студентом Малковым А.В.
Студенческий билет №95/84-99н
Группа №2
Дата выполнения работы
Руководитель