Смекни!
smekni.com

Проявление симметрии в различных формах материи (стр. 2 из 3)

Всё это сделало возможным приступить к первым серьёзным обобщениям, что привело к возникновению самостоятельной науки – кристаллографии, изучающей образование, свойства и внешнюю форму кристаллов. Создание кристаллографии связано с именем француза Жана-Батиста Ромэ-Делиля (1736-1790).

Прежде всего Ромэ-Делиль подчёркивал правильную геометрическую форму кристаллов исходя из закона постоянства углов между их гранями. Он писал: «К разряду кристаллов стали относить все тела минерального царства, для которых находили фигуру геометрического многогранника…» Правильная форма кристаллов возникает по двум причинам. Во-первых, кристаллы состоят из элементарных частичек - молекул, которые сами имеют правильную полиэдрическую форму. Во-вторых, «такие молекулы имеют замеча­тельное свойство соединяться между собой в сим­метричном порядке».

Последняя фраза для нас очень важна. Ведь это фактически первое по времени применение идеи сим­метрии к кристаллам. Правда, оно касается не сим­метрии внешней формы, о которой мы сейчас говорим, а относится к расположению полиэдрических моле­кул в кристалле. Но от этого важность обобщения Ромэ-Делиля отнюдь не уменьшается. Наоборот, опи­сывая расположение молекул в кристалле как сим­метричное. Ромэ-Делиль тем самым молчаливо по­лагал, что и внешняя форма кристалла - следствие такого расположения - тоже симметрична. При этом под симметрией внешней формы кристалла следовало понимать закономерное расположение его одинаковых граней, ребер и вершин в пространстве.

Изучая законы внешней формы кристаллов, Ромэ-Делиль выделил в качестве основных пять форм: тет­раэдр, куб, октаэдр, ромбоэдр и гексагональную ди-пирамиду. Он ошибочно полагал, что формы всех осталь­ных кристаллов можно получить из этих основных форм.

5. Симметрия физических явлений

«Я думаю, что было бы интересно ввести в изучение физических явлений также и рассмотрение свойств симметрии, столь знакомое кристаллографам».

Так начиналась небольшая статья Пьера Кюри «О симметрии в физических явлениях: симметрия электрического и магнитного полей», опубликованная в 1894 году во французском «Физическом журнале».

До Кюри физики часто использовали соображения, вытекающие из условий симметрии. Достаточно сказать, что многие задачи механики, и особенно статики, решались только исходя из условий симметрии. Но обычно эти условия достаточно простые и наглядные и не требуют детального рассмотрения. Впервые физики столкнулись с нетривиальным проявлением симметрии физических свойств при изучении кристаллов.

Впервые четкое определение симметрии физических явлений дал Кюри в своей статье. «Характеристическая симметрия некоторого явления, - писал он, - есть максимальная симметрия, совместимая с существованием явления». Всеобщий подход к симметрии физиче­ских явлений, развитый им, очень точно разъяснила Мария Кюри в биографическом очерке о своем муже: «П. Кю­ри безгранично расширил понятие о симметрии, рас­сматривая последнюю как состояние пространства, в ко­тором происходит данное явление. Для определения этого состояния надо знать не только строение среды, но и учесть характер движения изучаемого объекта, а также действующие на него физические факторы. При характеристике симметрии среды важно помнить сле­дующие идеи Кюри: нужно определить особую симмет­рию каждого явления и ввести классификацию, позво­ляющую ясно видеть основные группы симметрии. Мас­са, электрический заряд, температура имеют один и тот же тип симметрии, называемый скалярным; это есть, иначе говоря, симметрия сферы. Поток воды и постоян­ный электрический ток имеют симметрию стрелы типа полярного вектора. Симметрия прямого кругового ци­линдра принадлежит к типу тензора».

5.1 Симметрия в механике

Пьер Кюри пришел к симметрии физических явлений от симметрии кристаллов (геометрических фигур) через симметрию материальных фигур. Это принесло важные результаты при описании физических свойств кристал­лов и обещает большие успехи в других областях фи­зики.

Но работы Пьера Кюри не оказали влияния на раз­витие идеи симметрии в физике. Причины этого стран­ного парадокса, кроме указанных ранее (кристаллографичность работ Кюри, краткость, если не конспектив­ность их изложения), состоит еще и в том, что они поя­вились слишком поздно, тогда, когда физика уже нако­пила большой опыт несколько иного подхода к симмет­рии физических явлений, который связан с развитием механики в XVII—XIX веках.

В то время механика была фактически всей физикой. Самым главным считалось изучение движения и взаимо­действия тел. Соответствующие законы, кажущиеся нам сейчас такими очевидными, потребовали колоссального труда нескольких поколений выдающихся ученых. Ко­перник, Кеплер, Галилей, Декарт, Гюйгенс шаг за ша­гом двигались к пониманию истинных законов, управля­ющих движением материальных тел.

Окончательно эти законы были сформулированы Исааком Ньютоном (1643—1727). Но поскольку движе­ние совершается в пространстве и во времени, ему приш­лось обобщить и сформулировать некие положения, пос­тулирующие их свойства.

Ньютон считал, что существует абсолютное пространство, свободное и независимое от каких-либо тел. Это абсолютное пространство изотропно, то есть любые направления в нем одинаковы. Кроме того, оно однород­но, так как любые две точки пространства ничем не от­личаются друг от друга. Существует также абсолютное время, независимое от каких-либо процессов, текущее вечно и равномерно. Равномерность течения времени предполагает его однородность: скорость течения време­ни со временем не меняется.

5.1.1 Однородность пространства

Чтобы понять, какое от­ношение она имеет к механике, начнем с простого вопроса: почему камень падает вниз? Ответ: потому что на него действует сила тяжести. Иными словами, пространство вблизи земной поверхности физически неоднородно: все тела стремятся занять самые низкие положения, поближе к Земле.

Столь же неоднородно пространство вблизи Солнца: орбиты всех тел солнечной системы искривлены. Но вся Солнечная система как целое движется прямолинейно, по крайней мере, в течение миллионов лет отклонения от прямолинейности в ее движении не было.

Пространство, в котором она движется, свободно от тяготеющих тел, и здесь можно говорить об однородности. Иными словами, на солнечную систему как целое не дей­ствуют внешние силы Согласно второму закону Ньюто­на внешняя сила равна изменению импульса тела за еди­ницу времени. (Импульсом системы тел называется их суммарная масса, умноженная да скорость центра инер­ции. Он равен также векторной сумме импульсов всех тел системы. Вместо «импульс» часто говорят «количество движения», номы не будем пользоваться этим термином.) Когда результирующая внешняя сила, действующая на систему, равна нулю, импульс системы не изменяется со временем, т. е. сохраняется.

Мы не попытаемся подменить второй закон Ньютона рассуждением об однородности пространства. Наоборот, утверждается, что из второго закона Ньютона следует прямолинейность и равномерность движения центра инер­ции системы тел в однородном пространстве. Никакие внутренние силы в системе не наруша­ют однородности пространства по отношению к системе как целому. Поэтому действие внутренних сил оставляет импульс системы неизменным.

5.1.2 Изотропия пространства

Пространство обладает еще одним видом симметрии — относительно поворотов координатных систем. Эта идея давалась человечеству с большим трудом; ведь когда то думали, что Земля плоская, и вертикальное направление абсолютно. То, что Земля — шар, стало известно образо­ванным людям еще в древности. Для них вертикальное направление не было абсолютным, а менялось на земной поверхности от точки к точке. Но Земля в представлении большинства начитанных людей до эпохи Коперника была центром мироздания. Поэтому для них равноценными были не все направления в пространстве, а все прямые, проходящие через центр Земли. Там находилась особая, выделенная точка, центр симметрии Вселенной.

Открытие Коперника лишило Землю ее преимущест­венного положения. Центр Земли для мыслящих людей перестал быть центром Вселенной. Чем же он физически выделен для нас? Очевидно, тем, что к нему направлена сила притяжения Земли. Но достаточно далеко от всех тяготеющих тел все точки пространства равноценны, равно как все прямые, проведенные через любую точку Вокруг любой прямой можно повернуть координатную систему на любой угол, и повернутая система будет во всех отно­шениях равноценна первоначальной.

Таким образом, мы сформулировали еще одно свойст­во симметрии пространства. Условимся о терминологии. Симметрию относительно поворотов будем называть изо­тропией, а относительно переносов — однородностью.

5.1.3 Однородность времени

Перейдем теперь к конкретным свойствам симметрии времени. Рассмотрим сначала симметрию относительно переноса вдоль любой прямой. Перенос в любом направлении можно разложить по трем взаимно перпендикулярным осям. Таким образом, пространство имеет группу симметрии относительно произвольных пере­носов по трем взаимно перпендикулярным направлениям (см. выше).

Время задается одной величиной, а не тремя, как точ­ка в пространстве. Насколько можно считать, что симмет­рия времени напоминает симметрию прямой относитель­но переносов, т. е. что их абстрактная группа симметрии одна и та же? Ведь 12 часов дня вчера и сегодня, или завтра, совсем не одно и то же для нас. Но симметрия — понятие относительное. Симмет­рия времени уже, чем симметрия бесконечной прямой, если рассматривать время во всех его аспектах, но тем не менее не исключена возможность, что время симметрично по отношению к одному определенному классу законов природы.