Смекни!
smekni.com

Начало и конец Вселенной (стр. 8 из 9)

По мере сжатия Вселенная, естественно, будет проходить те же стадии, что и при создании Вселенной, но в обратном порядке. Температура будет рас­ти, и сокращающиеся интервалы времени начнут иг­рать все большую роль. Наконец галактики тоже ис­парятся и превратятся в первичный «суп» из ядер, а затем распадутся и ядра. Вселенная быстро проско­чит через лептонную и адронную эпохи к хаосу. В эпоху адронов ядра развалятся на кварки. На этом этапе Вселенная станет крохотной и состоящей толь­ко из излучения, кварков и черных дыр. В последнюю долю секунды коллапс дойдет почти до сингулярно­сти, а затем произойдет «большой пшик».

Отскок.

Что случится во время «большого пшика» — неиз­вестно, поскольку нет теории, которая годилась бы для описания сверхбольших плотностей, возникаю­щих до появления сингулярности; можно лишь стро­ить предположения. Большинство из них основано на идее «отскока» — внезапного прекращения сжатия, нового Большого взрыва и нового расширения. Одной из причин первоначального введения идеи отскока была возможность обойти неприятную с точки зрения многих астрономов проблему возникновения Вселен­ной. Если отскок произошел один раз, то он мог слу­чаться неоднократно, может быть, бесчисленное коли­чество раз, поэтому не нужно и беспокоиться о начале времен.

К сожалению, при подробной проработке такой идеи оказалось, что и отскок не решает проблемы. В интервалах между отскоками звезды излучают зна­чительное количество энергии, которая затем кон­центрируется при достижении состояния, близкого к сингулярности. Эта энергия должна постепенно на­капливаться, из-за чего промежуток времени меж­ду последовательными отскоками будет возрастать. Значит, в прошлом эти промежутки были короче, а когда-то, в пределе, промежутка не было вовсе, т. е. мы приходим к тому, чего старались избежать, — про­блеме начала Вселенной. Согласно расчетам, от нача­ла нас должно отделять не более 100 циклов расшире­ний и сжатий.

Многие предпринимали попытки обойти эту про­блему. Томми Голд, например, разработал теорию, со­гласно которой в момент наибольшего расширения время начинает течь вспять. Излучение устремится обратно к звездам и Вселенная «омолодится». В та­ком случае она будет равномерно осциллировать меж­ду коллапсом и максимальным расширением.

Весьма интересную, но очень спорную теорию пред­ложил Джон Уилер. Воспользовавшись идеей Хо-кинга, согласно которой фундаментальные константы «теряют» свои числовые значения при достаточно вы­соких плотностях, он показал, что цикл осцилляции не обязательно должен удлиняться. Из-за принципа неопределенности значения констант утрачиваются, когда Вселенная сжимается до почти бесконечной плотности. После возможного отскока и нового рас­ширения эти константы могут получить совершенно иные значения. Продолжительность циклов в таких обстоятельствах также будет меняться, но случайным образом; одни циклы станут очень длинными, а дру­гие короткими.

Судьба открытой Вселенной.

В противоположность замкнутой, открытая Все­ленная продолжает расширяться вечно. Основным от­личием от процессов, описанных в предыдущем раз­деле, является разница во временах. Раньше речь шла о периодах в 50 или 100 миллиардов лет, а сейчас при­дется рассматривать столь большие промежутки вре­мени, что понадобятся числа с большим показателем степени, например, будут упоминаться интервалы до 10(100) лет. Если трудно представить себе 100 милли­ардов лет, то о таком числе и говорить нечего.

Первые события будут, конечно, аналогичны тем, которые происходят в замкнутой Вселенной. Звезды постепенно постареют, превратившись с течением времени в красных гигантов, либо взорвутся, либо медленно сколлапсируют и умрут. Некоторые из них, прежде чем погаснуть, столкнутся с другими звезда­ми. Такие столкновения очень редки, и с момента об­разования нашей Галактики (по крайней мере, в ее внешних областях, где мы обитаем) их было совсем немного. Однако за триллионы и триллионы триллио­нов лет таких столкновений произойдет множество. Часть из них лишь сбросит в пространство планеты, а в результате других звезды окажутся на совершенно иных орбитах, некоторые даже вне пределов нашей Галактики. Если подождать достаточно долго, то нам покажется, что внешние области галактик испаряются.

Не выброшенные из галактик звезды в результате столкновений, скорее всего, будут притягиваться к центру, который в конце концов превратится в гигантскую черную дыру. Примерно через 10(18) лет боль­шинство галактик будет состоять из массивных черных дыр, окруженных роем белых карликов, нейтронных звезд, черных дыр, планет и различных частиц.

Дальнейшие события вытекают из современной еди­ной теории поля, называемой теорией великого объе­динения,1 о ней речь пойдет позже. Из этой теории сле­дует, что протон распадается примерно за 10(31) лет. Сейчас ведется несколько экспериментов по обнару­жению такого распада, а значит, и по проверке теории, Согласно ей, протоны должны распадаться на элек­троны, позитроны, нейтрино и фотоны. Отсюда следу­ет, что, в конце концов, все, что состоит во Вселенной из протонов и нейтронов (а их не содержат только черные дыры), распадется на эти частицы. Вселенная превратится в смесь из них и черных дыр, и будет на­ходиться в таком состоянии очень, очень долго. Когда-нибудь испарятся маленькие черные дыры, а вот с большими возникнут трудности. Фоновое излучение к тому времени будет очень холодным, но все же его температура останется чуть выше, чем у черных дыр. Однако по мере расширения Вселенной ситуация из­менится — температура излучения станет ниже, чем на поверхности черных дыр, и те начнут испаряться, медленно уменьшаясь в размерах; на это потребуется примерно 10(100) лет. Затем Вселенную заполнят электроны и позитроны, которые, вращаясь друг во­круг друга, образуют огромные «атомы». Но посте­пенно позитроны и электроны, двигаясь по спирали, столкнутся и аннигилируют, в результате чего оста­нутся только фотоны. Во Вселенной не будет ничего, кроме излучения.

Мы рассмотрели судьбу как открытой, так и за­крытой Вселенной. Что ее ждет, пока неизвестно. Если даже Вселенная когда-нибудь сколлапсирует, неизве­стно, произойдет ли потом «отскок».

Заключение.

В данной работе я постарался рассмотреть современные взгляды на возникновение, дальнейшее существование и конец Вселенной. Теперь обобщим выше изложенный матерьял.

Когда-то наша Вселенная была по своим размерам меньше атома. Она начала своё существование как особая точка, не имеющая ни размеров, ни массы. Теория "Большого Взрыва" - самая распространённая в наши дни теория, объясняющая происхождение Вселенной - предполагает, что Вселенная начала своё существование примерно пятнадцать миллиардов лет назад. Сначала она представляла собой невообразимо малый, яркий, горячий и плотный объект.

Затем произошёл Большой Взрыв, в результате которого выделилось огромное количество энергии. В первые минуты взрыва образовались водород и гелий - самые лёгкие частицы в таблице Менделеева. Вероятно, они сконцентрировались в виде облачных образований, которые примерно четырнадцать миллиардов лет назад начали сгущаться благодаря собственной массе.

В течение следующих двух миллиардов лет из этих облаков образовались первые галактики. Наша галактика - Млечный Путь образовалась примерно десять миллиардов лет назад. Внутри неё образовались все звёзды и планеты, включая и нашу Землю, которая образовалась из окружающих её газовых облаков.

Сейчас радиус Вселенной составляет около 15 миллиардов световых лет. В процессе расширения некоторая часть массы Вселенной сконденсировалась и образовала бесчисленные миллиарды звёзд, которые сосредоточены в галактиках. Известная Вселенная включает 10 миллиардов галактик, объединённых в скопления, а те, в свою очередь, в сверхскопления, отделённые друг от друга огромными расстояниями космического пространства.

Кроме теории Большого Взрыва большой популярностью пользуется теория стабильного состояния. Правда, открытие в 1965 году КМФИ ( космическое микроволновое фоновое излучение ) сильно поколебало её позиции. Согласно этой теории у Вселенной не было начала и не будет конца. Она также утверждает, что плотность её остаётся неизменной благодаря постоянному созданию нового вещества (водорода - каждые 20 лет по атому на 1 литр пространства ), которое компенсирует её расширение.

Значит, согласно теории стабильного состояния Вселенная будет расширяться бесконечно. Но есть ещё две теории. Согласно одной из них Вселенная прекратит расширение и стабилизируется, когда достигнет определённых размеров. Последняя же теория утверждает, что, в конце концов, Вселенная перестанет расширяться, а затем под действием гравитационных сил начнёт сжиматься в одну точку. В результате произойдёт так называемый “Большой Треск”. Но теория Большого взрыва вызывает больше доверия и для это есть причины.

Некоторые явления во Вселенной являются прямым следствием событий далекого прошлого. Их называют реликтовыми. Основные из них следующие:

1) фоновое излучение (температура около 3 К);

2) избыток гелия (около 25 % общей массы);

3) однородность и изотропность пространства;

4) наличие флуктуации, следующее из существо­вания галактик;

5) соотношение между веществом и излучением.

В идеале теория, предложенная учеными (в нашем случае теория Большого взрыва), должна предсказы­вать определенные события, скажем, наличие излу­чения с температурой 3000 К. Применяя нашу тео­рию, можно проследить изменение этой температуры до наших дней. Теория предсказывает, что сейчас она должна составлять около 3 К. Мы начинаем поиски излучения и, как уже говорилось, находим его. То же относится и к гелию: теория предсказывает, что гелий должен составлять около 25 % всего вещества во Все­ленной, и мы видим, что это число очень близко к ре­альному. С другими реликтами, впрочем, возникают сложности: например, мы до сих пор не знаем точно, в результате каких флуктуации появились галактики. Кроме того, теория Большого взрыва предсказывает существование большого числа магнитных монополей (магнитные монополи — это частицы с единствен­ным магнитным полюсом, тогда как у обычного маг­нита полюсов всегда два — северный и южный). Однако до сих пор ни одного монополя не обнаруже­но. Теория раздувания помогает решить некоторые из этих проблем, но она же рождает новые трудности.