Смекни!
smekni.com

Начало и конец Вселенной (стр. 6 из 9)

Естественно, возникает вопрос: хватит ли этого за­медления, чтобы разбегание галактик остановилось полностью? Иными словами, достаточно ли взаимно­го гравитационного при­тяжения для преодоления расширения? Легко видеть, что это зависит от напря­женности гравитационного поля, которая, в свою оче­редь, зависит от средней плотности вещества во Все­ленной (количества вещества в единице объема). Иначе этот вопрос можно сформулировать так: доста­точно ли велика средняя плотность вещества во Все­ленной, чтобы остановить ее расширение? Пока дать определенный ответ невозможно, но, как мы видели раньше, похоже, что средняя плотность близка к так называемой критической.

Открыта или замкнута Вселенная зависит от того, насколько ее плотность отличается от критической, равной примерно 0,5 • 10(-30) г/см3. Если плотность больше этого значения, то Вселенная замкнута и в конце концов сожмется в точку; если же меньше, то она открыта и будет расширяться вечно. Может по­казаться, что решить вопрос о замкнутости или от­крытости Вселенной совсем нетрудно, для этого нуж­но лишь измерить среднюю плотность и сравнить ее с критической. К сожалению, здесь возникают труд­ности, и весьма серьезные. Можно довольно точно оценить плотность видимого вещества, но она очень далека от критической — для того, чтобы Вселенная была замкнутой, видимого вещества должно быть раз в 100 больше.

Известно, однако, что есть довольно много «неви­димой материи» — небольших слабых звезд, пыли, об­ломков камней, черных дыр и излучения. Обеспе­чивает ли она замкнутость Вселенной? На первый взгляд кажется, что нет, и такой вывод подтверждали исследования, проведенные в 70-х годах Готтом, Гун­ном, Шраммом и Тинсли. Однако после 1980 года был сделан ряд важных открытий, которые заставили пересмотреть отношение к этой проблеме.

Скрытая масса.

Дополнительная масса, требующаяся для того, что­бы Вселенная была замкнутой, называется скрытой массой. Это не очень удачное название, поскольку вполне может оказаться, что ее вообще нет. Однако имеются серьезные свидетельства того, что она суще­ствует, но в странном, непривычном виде. Давно изве­стно, что в галактиках есть много невидимого вещест­ва, часть его относится к отдельным галактикам, а часть — к их скоплениям.

Рассмотрим эти случаи по очереди и начнем с от­дельных галактик. Определить полную массу галак­тики довольно легко. Для этого вовсе не нужно рас­считывать средние массы звезд, а затем суммировать их по всему пространству; это слишком трудно, а то и невозможно. Применяется другой метод, и чтобы понять его, рассмотрим вначале Солнечную систему. Известно, что планеты движутся вокруг Солнца по орбитам, параметры которых подчиняются трем зако­нам, открытым Иоганном Кеплером несколько веков назад. Один из этих законов позволяет определить скорость планеты, если известна масса всего веще­ства, заключенного в пределы ее орбиты (в случае Солнечной системы почти вся масса сосредоточена в Солнце). Закон, естественно, работает и в другую сто­рону — зная скорость планеты, можно определить пол­ную массу объектов, находящихся внутри ее орбиты. Такой подход полностью применим и к галакти­кам. Наше Солнце, например, находится на расстоя­нии примерно 3/5 от центра Галактики. Измерив его орбитальную скорость, можно узнать массу всех звезд, расположенных между нами и центром Галактики. Расчет, конечно, не позволит вычислить полную мас­су Галактики, для этого потребуется какая-нибудь звезда на ее периферии.

На самом деле для этого даже не нужна звезда, го­дится любой объект. Астрономы несколько лет назад измерили скорость внешних облаков водорода в со­седних с нами спиралях галактик и обнаружили, что они движутся гораздо быстрее, чем должны были бы согласно принятой оценке массы галактики. Изучив эту проблему глубже, они пришли к выводу, что на окраинах этих галактик должно быть значительное количество вещества в форме гало. К удивлению уче­ных выяснилось, что масса таких гало превышает мас­су звезд.

Из чего же они состоят? Ясно, что не из звезд, ина­че они были бы видны. Возможно, это очень слабые звезды или обломки, пыль, газ. Если гало есть у всех галактик, то, конечно, масса их значительно возрастет, а следовательно, увеличится и масса всей Вселенной. Но окажется ли этого достаточно, чтобы «замкнуть» Вселенную? Вычисления показали, что нет, но исто­рия на этом не кончается.

Большинство галактик во Вселенной образуют скопления; иногда в скопления входят только две-три галактики, но обычно гораздо больше. В наше скоп­ление, например, их входит около 30. Научившись определять массу отдельных галактик, астрономы об­ратились к их скоплениям. Просуммировав массы от­дельных галактик, они обнаружили, что их недоста­точно для того, чтобы силы притяжения удерживали скопление вместе как единое целое. Тем не менее они явно не собирались распадаться — ничто не указыва­ло на разлет отдельных галактик. Некоторым скопле­ниям не хватало сотен собственных масс, чтобы удер­жать их вместе силами гравитационного притяжения. Даже добавление дополнительной массы, заключен­ной в гало, не спасало положения. Учитывая это, легко понять, почему ученые говорят о скрытой массе.

Если она действительно существует, то в какой форме? Очевидно, в такой, которую нелегко обнару­жить. Это может быть, например, газообразный водо­род — либо нейтральный атомарный, либо ионизован­ный (т. е. получивший заряд в результате потери электронов). Однако при ближайшем рассмотрении оказывается, что нейтральный водород на эту роль не подходит. Он излучает на волне 21 см и соответству­ющие наблюдения показали, что как между ближни­ми, так и между дальними галактиками водорода со­всем немного.

Одно время считалось, что подойдет ионизованный водород, поскольку фоновое рентгеновское излучение во Вселенной связывалось именно с ним. Однако позже выяснилось, что это излучение скорее всего вызыва­ется квазарами. Тогда пришла очередь нейтронных звезд, белых карликов и черных дыр, но и они в конце концов отпали. Черные дыры должны были бы быть сверхмассивными (иметь массу порядка галактичес­кой) или же встречаться очень часто, что маловероят­но. Исследования показали, что хотя в центре многих, если не всех, галактик могут быть массивные черные дыры, нет свидетельств существования таких изоли­рованных дыр в скоплениях, иначе была бы вероят­ность заметить их и в нашей Галактике.

В качестве возможных кандидатов рассматрива­лись и фотоны, ведь энергия есть одна из форм суще­ствования материи. Однако и в этом случае расчеты показали, что их вклад явно недостаточен.

Создавалось впечатление, что во Вселенной просто недостаточно материи и потому она незамкнута. Тем не менее некоторые ученые были убеждены, что в кон­це концов недостающая масса найдется. И вот насту­пила кульминация... В предыдущей главе говорилось, что весь дейтерий во Вселенной образовался через не­сколько минут после Большого взрыва. Хотя основ­ная его часть быстро превратилась в гелий, некоторое количество все же осталось, и если его измерить, то можно ответить на вопрос, замкнута ли Вселенная. Чтобы понять почему, посмотрим, что происходило в то время. Известно, что при соударении ядер дейте­рия образуется гелий. Если плотность Вселенной бы­ла высока, то соударений было много и образовалось значительное количество гелия; если же плотность бы­ла низка, то осталось много дейтерия. Поскольку ко­личество дейтерия во Вселенной со временем измени­лось незначительно, измерение его должно показать, замкнута ли Вселенная. Такие измерения, конечно же, были проделаны, и вот их результат — Вселенная не замкнута. В 70-е годы такой результат казался вполне убедительным, а когда аналогичные оценки были про­деланы для гелия и совпали с данными по дейтерию, вопрос, казалось, был решен окончательно — Вселен­ная открыта.

Однако через несколько лет ученые нашли изъян в этой аргументации. Из нее следовало лишь то, что Вселенная не может оказаться замкнутой частицами, называемыми барионами. К барионам относятся и протоны и нейтроны, из которых состоит большинст­во известных нам объектов — звезды, космическая пыль, водород и даже образовавшиеся в результате коллапса звезд черные дыры. Может возникнуть во­прос: а есть ли что-нибудь кроме барионов? Да, это лептоны и так называемые экзотические частицы. Лептоны чересчур легки, чтобы заметно увеличить массу, а вот экзотические частицы в последнее время привлекают к себе большое внимание. Первыми в по­ле зрения попали нейтрино, и в течение какого-то вре­мени астрономы были убеждены, что эта частица по­может «замкнуть» Вселенную. Нейтрино почти так же распространены, как фотоны, примерно миллиард на каждый атом вещества; долгое время считалось, что их масса покоя равна нулю. Конечно, массой они все-таки обладают, ведь любая форма энергии имеет массу, но ее явно не хватит, чтобы остановить расши­рение Вселенной.

Но вот в конце 70-х годов было высказано предпо­ложение, что нейтрино имеют массу покоя. Как бы мала она ни была, из теорий следовало, что в целом она может внести существенный вклад в массу Вселенной. Эксперимент по проверке этого предположе­ния был выполнен группой ученых, в которую входи­ли Ф. Рейнес, X. Собел и Э. Пасиерб. Они не измеряли массу непосредственно, а выбрали другой путь. Ранее было обнаружено, что фактически существует три ти­па нейтрино — один, связанный с электроном, дру­гой — с более тяжелой, хотя и подобной электрону ча­стицей, называемый мюоном, а третий — с еще более тяжелой частицей, «тау», обнаруженной в 1977 году. Согласно теории, все три разновидности нейтрино могут превращаться друг в друга. Иными словами, они могут менять тип, но только в том случае, если их масса больше нуля. Рейнес, Собел и Пасиерб провели соответствующий эксперимент и пришли к выводу, что им удалось зарегистрировать переход от одного типа нейтрино к другому.