Смекни!
smekni.com

Наука о сложных системах (стр. 2 из 3)

Кибернетика выявляет зависимости между информацией и другими характеристиками систем. Работа «демона Максвелла» позволяет установить обратно пропорциональную зависимость между информацией и энтропией. С повышением энтропии умень­шается информация (поскольку все усредняется) и наоборот, пони­жение энтропии увеличивает информацию. Связь информации с эн­тропией свидетельствует и о связи информации с энергией.

Энергия (от греч. energeia — деятельность) характеризует об­щую меру различных видов движения и взаимодействия в формах: механической, тепловой, электромагнитной, химической, гравита­ционной, ядерной. Информация характеризует меру разнообразия систем. Эти два фундаментальных параметра системы (наравне с ее вещественным составом) относительно обособлены друг от друга. Точность сигнала, передающего информацию, не зависит от количе­ства энергии, которая используется для передачи сигнала. Тем не менее энергия и информация связаны между собой. Винер приводит такой пример: «Кровь, оттекающая от мозга, на долю градуса теплее, чем кровь, притекающая к нему» (Там же.- С. 201).

Информация растет с повышением разнообразия системы, но на этом ее связь с разнообразием не кончается. Одним из основных законов кибернетики является закон «необходимого разнообразия». В соответствии с ним эффективное управление какой-либо системой возможно только в том случае, когда разнообразие управляющей си­стемы больше разнообразия управляемой системы. Учитывая связь между разнообразием и управлением, можно сказать, что чем боль­ше мы имеем информации о системе, которой собираемся управлять, тем эффективнее будет этот процесс.

Общее значение кибернетики обозначается в следующих на­правлениях:

1. Философское значение, поскольку кибернетика дает новое

представление о мире, основанное на роли связи, управления, ин­формации, организованности, обратной связи, целесообразности,

вероятности.

2. Социальное значение, поскольку киоернетика дает новое представление об обществе как организованном целом. О пользе ки­бернетики для изучения общества немало было сказано уже в мо­мент возникновения этой науки.

3. Общенаучное значение в трех смыслах: во-первых, потому что кибернетика дает общенаучные понятия, которые оказываются важными в других областях науки — понятия управления, сложно-динамической системы и т. п.; во-вторых, потому что дает науке но­вые методы исследования: вероятностные, стохастические, модели­рования на ЭВМ и т. д.; в-третьих, потому что на основе функцио­нального подхода «сигнал — отклик» кибернетика формирует гипотезы о внутреннем составе и строении систем, которые затем могут быть проверены в процессе содержательного исследования. Например, в кибернетике выработано правило (впервые для техни­ческих систем), в соответствии с которым для того, чтобы найти ошибку в работе системы, необходима проверка работы трех одина­ковых систем. По работе двух находят ошибку в третьей. Возможно так действует и мозг.

4. Методологическое значение кибернетики определяется тем обстоятельством, что изучение функционирования более простых технических систем используется для выдвижения гипотез о меха­низме работы качественно более сложных систем (живых организ­мов, мышления человека) с целью познания происходящих в них процессов — воспроизводства жизни, обучения и т. п. Подобное ки­бернетическое моделирование особенно важно в настоящее время во многих областях науки, поскольку отсутствуют математические те­ории процессов, протекающих в сложных системах и приходится ог­раничиваться их простыми моделями.

5. Наиболее известно техническое значение кибернетики — создание на основе кибернетических принципов электронно-вычис­лительных машин, роботов, персональных компьютеров, породив­шее тенденцию кибернетизации и информатизации не только науч­ного познания, но и всех сфер жизни.

ЭВМ и персональные компьютеры

Точно так же, как разнообразные машины и механизмы облегчают физический труд людей, ЭВМ и персональные компьютеры облегча­ют его умственный труд, заменяя человеческий мозг в его наиболее простых и рутинных функциях. ЭВМ действуют по принципу «да-нет», и этого оказалось достаточно для того, чтобы создать вычисли­тельные машины, хотя и уступающие человеческому мозгу в гибкос­ти, но превосходящие его по быстроте выполнения вычислительных операций. Аналогия между ЭВМ и мозгом человека дополняется тем,' что ЭВМ как бы выполняет роль центральной нервной системы для устройств автоматического управления.

Введенное чуть позже в кибернетике понятие самообучаю­щихся машин аналогично воспроизводству живых систем. И то, и другое есть созидание себя (в себе и в другом), возможное в отноше­нии машин, как и живых систем. Обучение онтогенетически есть то же, что и самовоспроизводство филогенетически.

Как бы не протекал процесс воспроизводства, «это — динами­ческий процесс, включающий какие-то силы или их эквиваленты. Один из возможных способов представления этих сил состоит в том, чтобы поместить активный носитель специфики молекулы в частот­ном строении ее молекулярного излучения, значительная часть ко­торого лежит, по-видимому, в области инфракрасных электромаг­нитных частот или даже ниже. Может оказаться, что специфические вещества вируса при некоторых обстоятельствах излучают инфра­красные колебания, которые обладают способностью содействовать формированию других молекул вируса из неопределенной магмы аминокислот и нуклеиновых кислот. Вполне возможно, что такое яв­ление позволительно рассматривать как некоторое притягательное взаимодействие частот» (Там же.- С. 281-282).

Такова гипотеза воспроизводства Винера, которая позволяет предложить единый механизм самовоспроизводства для живых и неживых систем.

Современные ЭВМ значительно превосходят те, которые по­явились на заре кибернетики. Еще 10 лет назад специалисты сомне­вались, что шахматный компьютер когда-нибудь сможет обыграть приличного шахматиста, но теперь он почти на равных сражается с чемпионом мира. То, что машина чуть было не выиграла у Каспарова за счет громадной скорости перебора вариантов (100 млн. в сек. про­тив двух у человека) остро ставит вопрос не только о возможностях ЭВМ, но и о том, что такое человеческий разум.

Предполагалось два десятилетия назад, что ЭВМ будут с го­дами все более мощными и массивными, но вопреки прогнозам крупнейших ученых, были созданы персональные компьютеры, которые стали повсеместным атрибутом нашей жизни. В перспек­тиве нас ждет всеобщая компьютеризация и создание человекопо­добных роботов.

Надо, впрочем, иметь в виду, что человек не только логически мыслящее существо, но и творческое, и эта способность — резуль­тат всей предшествующей эволюции. Если же будут построены не просто человекоподобные роботы, но и превосходящие его по уму, то это повод не только для радости, но и для беспокойства, связанного как с роботизацией самого человека, так и с проблемой возможного «бунта машин», выхода их из-под контроля людей и даже порабо­щения ими человека. Конечно, в XX веке это не более, чем далекая от реальности фантастика.

Модели мира

Благодаря кибернетике и созданию ЭВМ одним из основных спосо­бов познания, наравне с наблюдением и экспериментом, стал метод моделирования. Применяемые модели становятся все более мас­штабными: от моделей функционирования предприятия и экономи­ческой отрасли до комплексных моделей управления биогеоценозами, эколого-экономических моделей рационального природопользо­вания в пределах целых регионов, до глобальных моделей.

В 1972 году на основе метода «системной динамики» Дж. Форрестера были построены первые так называемые «модели мира», на­целенные на выработку сценариев развития всего человечества в его взаимоотношениях с биосферой. Их недостатки заключались в чрез­мерно высокой степени обобщения переменных, характеризующих процессы, протекающие в мире; отсутствии данных об особенностях и традициях различных культур и т. д. Однако, это оказалось очень многообещающим направлением. Постепенно указанные недостатки преодолевались в процессе создания последующих глобальных мо­делей, которые принимали все более конструктивный характер, ориентируясь на рассмотрение вопросов улучшения существующе­го эколого-экономического положения на планете.

М. Месаровичем и Э. Пестелем были построены глобальные модели на основе теории иерархических систем, а В. Леонтьевым — на основе разработанного им в экономике метода «затраты — вы­пуск». Дальнейший прогресс в глобальном моделировании ожидает­ся на путях построения моделей, все более адекватных реальности, сочетающих в себе глобальный, региональные и локальные моменты.

Споры относительно эффективности применения кибернети­ческих моделей в глобальных исследованиях не умолкают и поныне. Создатель метода системной динамики Дж. Форрестер выдвинул так называемый «контринтуитивный принцип», в соответствии с ко­торым сложные системы функционируют таким образом, что это принципиально противоречит человеческой интуиции, и таким об­разом машины могут дать более точный прогноз их поведения, чем человек. Другие исследователи считают, что «контринтуитивное по­ведение» свойственно тем системам, которые находятся в критичес­кой ситуации.

Трудности формализации многих важных данных, необходи­мых для построения глобальных моделей, а также ряд других мо­ментов свидетельствуют о том, что значение машинного моделирования не следует абсолютизировать. Моделирование может принес­ти наибольшую пользу в том случае, если будет сочетаться с други­ми видами исследований.