Более массивные звезды на этапе превращения в белого карлика теряют водородную оболочку в результате мощного взрыва, сопровождающегося многократным увеличением светимости («сверх-новые звезды»). После выгорания их ядер сил давления в плазме оказывается недостаточным для компенсации гравитационных сил. В результате уплотнения вещества электроны «вдавливаются» в протоны с образованием нейтральных частиц. Возникает нейтронная звезда - весьма компактное (радиус в несколько километров) и массивное образование, вращающееся с фантастически высокой для космических объектов скоростью: около одного оборота в секунду. Вращающееся вместе со звездой его магнитное поле посылает в пространство узконаправленный луч электромагнитного (часто- рентгеновского) излучения, действуя подобно маяку. Источники мощного периодического излучения, открытые в радиоастрономии, получили название пульсаров.[3]
Звезды с массой, превосходящей массу Солнца более, чем в два раза, обладают столь сильным гравитационным полем, что на стадии нейтронной звезды их сжатие на останавливается. В результате дальнейшего неограниченного сжатия - гравитационного коллапса звезда уменьшается до таких размеров, что скорость, необходимая для ухода тела с ее поверхности на бесконечность превышает предельную (скорость света). При этом ни одно тело (даже свет) не может покинут непрерывно сжимающуюся звезду, представляющую собой «черную дыру», размерами всего в несколько колометров. Существование черных дыр допускают уравнения Общей Теории Относительности. В области черной дыры пространство-время сильно деформированы.
Астрономические наблюдения затруднены, поскольку такие объекты не излучают свет. Однако обнаружены звезды, совершающие движение, характерное для компонент двойных звезд, хотя парной звезды не наблюдается. Весьма вероятно, что ее роль играет черная дыра или не излучающая нейтронная звезда.
Помипо перечисленных обнаружен ряд астрофизических объектов, свойства которых не укладываются в приведенные схемы - квазары. Наблюдаемое их излучение аналогично пульсарному, но очень сильно смещено в красную область. Величина красного смещения указывает на то, что квазары находятся так далеко, что их наблюдаемая яркость соответствует излучению, превосходящему по интенсивности излучения галактического скопления. В то же время наличие быстрых изменений интенсивности ставит вопрос о механизме согласования излучения элементами системы, размеры которой должны составлять тысячи световых лет.
Общее представление о галактиках и их изучении.
Во второй половине 18 века английский астроном Вильям Гершель производил в разных областях неба подсчеты звёзд, наблюдаемых в поле зрения его телескопа. Оказалось, что на небе можно наметить большой круг, рассекающий все небо на две части и обладающий тем свойством, что при приближении к нему с любой стороны число звезд, видимых в поле зрения телескопа, неуклонно возрастает и на самом круге становится небольшим. Как раз вдоль этого круга, получившего название галактического экватора, стелется Млечный Путь, опоясывающая небо чуть светящаяся полоса, образованная сиянием слабых дальних звезд. Гершель правильно объяснил обнаруженное им явление тем, что наблюдаемые нами звезды образуют гигантскую звездную систему, которая сплюснута к галактическому экватору.
И все же, хотя вслед за Гершелем исследованием строения нашей звездной системы- Галактики занимались известные астрономы- В. Струве, Каптейн и другие, само представление л существовании Галактики как обособленной звездной системы являлось до тех пор, пока не были обнаружены объекты, находящиеся вне Галактики. Это произошло только в 20 годы нашего века, когда выяснилось, что спиралеобразные и некоторые другие туманности являются гигантскими звездными системами, находящимися на огромных расстояниях от нас и сравнимыми по строению и размерам с нашей Галактикой.
Выяснилось, что существует множество других звездных систем- галактик, весьма разнообразных по форме и по составу, причем среди них имеются галактики, очень похожие на нашу. Это обстоятельство оказалось очень важным. Наше положение внутри Галактики, с одной стороны, облегчает её исследование, а с другой- затрудняет, так как для изучения строения системы выгоднее её рассматривать не изнутри, а со стороны.
Форма Галактики напоминает круглый сильно сжатый диск. Как и диск, Галактика имеет плоскость симметрии, разделяющую её на две равные части и ось симметрии, проходящую через центр системы и перпендикулярную к плоскостям симметрии. Но у всякого диска есть точно обрисованная поверхность- граница. У нашей звездной системы такой чётко очерченной границы нет, также как нет чёткой верхней границы у атмосферы Земли. В Галактике звёзды располагаются тем теснее, чем ближе данное место к плоскости симметрии Галактики и чем ближе оно к её плоскости симметрии. Наибольшая звёздная плотность в самом центре Галактики. Здесь на каждый кубический парсек приходится несколько тысяч звёзд, т.е. в центральных областях Галактики звёздная плотность во много раз больше, чем в окрестностях Солнца. При удалении от плоскости и оси симметрии звёздная плотность убывает, при чём при удалении от плоскости симметрии она убывает значительно быстрее. По этому если бы мы условились считать границей Галактики те места, где звёздная плотность уже очень мала и составляет одну звезду на 100 пс, то очерченное этой границей тело было бы сильно сжатым круглым диском. Если границей считать область, где звёздная плотность ещё меньше и составляет одну звезду на 10 000 пс, то снова очерченной границей тело будет диском примерно той же формы, но только больших размеров. По этому нельзя вполне определённо говорить о размерах Галактики. Если всё-таки границами нашей звёздной системы считать места, где одна звезда приходится на 1 000 пс пространства, то диаметр Галактики приблизительно равен 30 000 пс, а её толщена 2 500 пс. Таким образом, Галактика- действительно сильно сжатая система: её диаметр в 12 раз больше толщины.
Количество звёзд в Галактике огромно. По современным данным оно превосходит сто миллиардов, т.е. примерно в 25 раз превосходит число жителей нашей планеты.
Все Галактики делятся на три основных вида:
1) эллиптические, обозначаемые Е;
2) спиральные, обозначаемые S;
3) неправильные, обозначаемые J[4]
Эллиптические Галактики внешне самый невыразительный тип Галактик. Они имеют вид гладких эллипсов или кругов с постепенным уменьшением яркости от центра к периферии. Эллиптические Галактики состоят из второго типа населения. Они построены из звёзд красных и желтых гигантов, красных и желтых карликов и некоторого количества белых звёзд не очень высокой светимости. Отсутствуют бело- голубые сверхгиганты и гиганты, группировки которых можно было бы наблюдать в виде ярких сгустков, придающих структуристость системе. Нет пылевой материи, которая в тех Галактиках, где она имеется, создает тёмные полосы, оттеняющие форму звёздной системы. Поэтому внешне эллиптические Галактики отличаются друг от друга в основном одной чертой- большим или меньшим сжатием.
Как выяснилось, очень сильно сжатых эллиптических галактик нет, показателем сжатия 8, 9 и 10 не встречаются. Наиболее сжатые эллиптические галактики – это- Е 7. У некоторых показатели сжатия 0. Такие галактики практически не сжаты.
Эллиптические галактики в скоплениях галактик- это гигантские галактики, в то время как эллиптические галактики вне скоплений- это карлики в мире галактик.
Спиральные галактики- один из самых живописных видов галактик во Вселенной. Спиральные галактики являют собой пример динамичности формы. Их красивые ветви, выходящие из центрального ядра и как бы теряющие очертания за пределами галактики , указывают на мощное, стремительное движение. Поражает так же многообразие форм и рисунков спиральных ветвей.
Ядра у таких галактик всегда большие, обычно составляют около половины наблюдаемого размера самой галактики.
Как правило, у галактики имеются две спиральные ветви, берущие начало в противоположных точках ядра, развивающиеся сходным симметричным образом и теряющиеся в противоположных областях периферии галактики.
Доказано, что сильно сжатая звёздная система в ходе эволюции не может стать слабо сжатой. Невозможен и противоположный переход. Значит, эллиптические галактики не могут превращаться в спиральные, а спиральные в эллиптические. Эти два типа представляют собой различные эволюционные пути, вызываемые различным сжатием систем. А различное сжатие обусловлено различным количеством вращения систем. Те галактики, которые при формировании получили достаточное количество вращения, приняли сильно сжатую форму, в них развились спиральные ветви. Галактики, материя которых после формирования имела меньшее количество вращения, оказались менее сжатыми и эволюционируют в виде эллиптических галактик.
Встречается большое число галактик неправильной формы, без какой либо общей закономерности структурного строения.
Неправильная форма у галактики может быть в следствии того, что она не успела принять правильной формы из- за малой плотности в ней материи или из- за молодого возраста. Есть и другая версия: галактика может стать неправильной в следствии искажения формы в результате взаимодействия с другой галактикой.
Оба таких случая встречаются среди неправильных галактик, может быть, с этим связано разделение неправильных галактик на два подтипа.
Подтип J1 характеризуется сравнительно высокой поверхностной яркостью и сложностью неправильной структуры. Французский астроном Вокулер в некоторых галактиках этого подтипа обнаружил признаки разрушенной спиральной структуры. Кроме того, Вокулер заметил, что галактики этого подтипа часто встречаются парами. Существование одиночных галактик так же возможно. Объясняется это тем, что встреча с другой галактикой могла иметь место в прошлом, теперь галактики разошлись, но для того, чтобы принять снова правильную форму им требуется длительное время.