Телеизмерительные информационные системы (ТИИС). Они отличаются от ранее рассмотренных в основном длиной канала связи. Канал связи является наиболее дорогой и наименее надежной частью этих систем, поэтому для ТИИС резко возрастает значение таких вопросов, как надежность передачи информации.
Телеизмерительные ИИС могут быть одно- или многоканальными. Они предназначаются для измерения параметров сосредоточенных и рассредоточенных объектов. В зависимости от того, какой параметр несущего сигнала используется для передачи информации, можно выделить ТИИС:
· интенсивности, в которых несущим параметром является значение тока или напряжения;
· частотные (частотно-импульсные), в которых измеряемый параметр меняет частоту синусоидальных колебаний или частоту следования импульсов;
· времяимпульсные, в которых несущим параметром является длительность импульсов; к ним же относятся фазовые системы, в которых измеряемый параметр меняет фазу синусоидального сигнала или сдвиг во времени между двумя импульсами;
· кодовые (кодоимпульсные), в которых измеряемая величина передается какими-либо кодовыми комбинациями.
Системы интенсивности подразделяются на системы тока и системы напряжения в зависимости от того, какой вид сигнала используется для информации. Этим системам присущи сравнительно большие погрешности, и они используются при передаче информации на незначительное расстояние.
Частотные ТИИС имеют большие возможности, поскольку в них практически отсутствуют погрешности, обусловленные влиянием линий связи, и возрастает дальность передачи информации по сравнению с системами интенсивности.
Время-импульсные системы по длительности применяемых для передачи импульсов подразделяют на две группы: системы с большим периодом (от 5 до 50 с) и системы с малым периодом (менее десятых долей секунды).
Длиннопериодные системы применяются в основном для измерения медленно меняющихся неэлектрических величин (уровень жидкости, давление газов и др.).
Короткопериодные системы имеют большое быстродействие. Для передачи коротких импульсов требуется большая полоса частот, пропускаемых каналом связи. В силу этого такие системы с проводными линиями связи (ЛС) используются редко.
В последнее время получили широкое развитие адаптивные ТИИС, в которых алгоритмы работы учитывают изменение измеряемой величины или окружающих условий (воздействий).
Основная цель применения адаптивных ТИИС состоит в исключении избыточности выдаваемой системой измерительной информации и в сохранении или оптимизации метрологических характеристик (помехоустойчивости, быстродействия, погрешностей) при изменении условий измерительного эксперимента.
В адаптивных ТИИС используются алгоритмы адаптивной дискретизации и могут быть использованы алгоритмы адаптивной аппроксимации.
Рассмотренные выше измерительные информационные системы показывают, что почти для каждого типа ИИС используется цепочка из аппаратных модулей (измерительных, управляющих, интерфейсных, обрабатывающих). Таким образом, обобщенная структурная схема ИИС содержит:
· множество различных первичных измерительных преобразователей, размещенных в определенных точках пространства стационарно или перемещающихся в пространстве по определенному закону;
· множество измерительных преобразователей, которое может состоять из преобразователей аналоговых сигналов, коммутаторов аналоговых сигналов, аналоговых вычислительных устройств, аналоговых устройств памяти, устройств сравнения аналоговых сигналов, аналоговых каналов связи, аналоговых показывающих и регистрирующих измерительных приборов;
· группу аналого-цифровых преобразователей, а также аналоговых устройств допускового контроля;
· множество цифровых устройств, содержащее формирователи импульсов, преобразователи кодов, коммутаторы, специализированные цифровые вычислительные устройства, устройство памяти, устройство сравнения кодов, каналы цифровой связи, универсальные программируемые вычислительные устройства - микропроцессоры, микроЭВМ и др.;
· группу цифровых устройств вывода, отображения и регистрации, которая содержит формирователи кодоимпульсных сигналов, печатающие устройства записи на перфоленту и считывания с перфоленты, накопители информации на магнитной ленте, на магнитных дисках и на гибких магнитных дисках, дисплеи, сигнализаторы, цифровые индикаторы;
· множество цифроаналоговых преобразователей;
· указанные функциональные блоки соединяются между собой через стандартные интерфейсы или устанавливаются жесткие связи;
· интерфейсные устройства (ИФУ), содержащие системы шин, интерфейсные узлы и интерфейсные устройства аналоговых блоков, служащие главным образом для приема командных сигналов и передачи информации о состоянии блоков. Например, через интерфейсные устройства могут передаваться команды на изменение режима работы, на подключение заданной цепи с помощью коммутатора;
· устройство управления, формирующее командную информацию, принимающее информацию от функциональных блоков и подающее команды на исполнительные устройства для формирования воздействия на объект исследования (ОИ).
Однако не для всякой ИИС требуется присутствие всех блоков. Для каждой конкретной системы количество блоков, состав функций и связи между блоками устанавливаются условиями проектирования.
В настоящее время ИИС находят все более широкое применение в различных областях науки и техники. Они применяются в качестве компонентов сложных информационно-вычислительных комплексов и систем автоматизации. Особенно важную роль играют автоматические ИИС, использующие ЭВМ для программного управления работой системы.
Возросшие объемы проводимых измерений привели к широкому использованию программно-управляемых СИ. При этом возросшие требования к характеристикам СИ оказали существенное влияние на методы сопряжения устройств, образующих ИИС.
Информационно-измерительные системы содержат ряд подсистем: измерительную, сбора, преобразования, предварительной обработки данных и подсистемы управления СИ в целом. Все подсистемы в ИИС соединены между собой в единую систему. Кроме того, ИИС в настоящее время проектируют на основе агрегатного (модульного) принципа, по которому устройства, образующие систему, выполняются в виде отдельных, самостоятельных изделий (приборов, блоков). В составе ИИС эти устройства выполняют определенные операции и взаимодействуют друг с другом, передавая информационные и управляющие сигналы через систему сопряжения.
Для унифицированных систем сопряжения между устройствами, участвующими в обмене информации, стал общепринятым термин интерфейс (interface). Под интерфейсом (или сопряжением) понимают совокупность схемотехнических средств, обеспечивающих непосредственное взаимодействие составных элементов ИИС (ГОСТ 15971—74). Устройства подсоединяются к системе сопряжения и объединяются в ИИС по определенным правилам, относящимся к физической реализации сопряжении. Конструктивное исполнение этих устройств, характеристики вырабатываемых и принимаемых блоками сигналов и последовательности выдаваемых сигналов во времени позволяют упорядочить обмен информацией между отдельными функциональными блоками (ФБ).
Под интерфейсной системой понимают совокупность логических устройств, объединенных унифицированным набором связей и предназначенных для обеспечения информационной, электрической и конструктивной совместимости. Интерфейсная система также реализует алгоритмы взаимодействия функциональных модулей в соответствии с установленными нормами и правилами.
Возможны два подхода к организации взаимодействия элементов системы и построению материальных связей между ними:
жесткая унификация и стандартизация входных и выходных параметров элементов системы;
использование функциональных блоков с адаптивными характеристиками по входам-выходам.
На практике часто сочетают оба подхода. Стандартизация интерфейсов позволяет:
· проектировать ИИС различных конфигураций;
· значительно сократить число типов СИ и их устройств сопряжения;
· ускорить и упростить разработку отдельных СИ и ИИС в целом;
· упростить техническое обслуживание и модернизацию ИИС;
· повысить надежность ИИС.
Применение развитых стандартных интерфейсов при организации ИИС позволяет обеспечить быструю компоновку системы и разработку программ управления СИ.
Основной структурной единицей ИИС является функциональный блок ФБ, который представляет собой один или несколько объединенных и взаимодействующих между собой измерительных преобразователей. Взаимодействие ФБ осуществляется через интерфейсные блоки ИБ по командам, организующим обмен данными. Команды управления формируются в управляющем блоке УБ и воздействуют на интерфейсные блоки через контроллер (К).
Между ФБ ИИС осуществляется обмен информационными и управляющими сообщениями. Информационное сообщение содержит сведения о значении измеряемого параметра, диапазоне измерения, времени измерения, результатах контроля состояния измерительных каналов и др. Управляющее сообщение содержит сведения о режиме работы ФБ, порядке выполнения ими последовательности операций во времени, команде контроля состояния измерительных каналов.
Интерфейс может быть общим для устройств разных типов, наиболее распространенные интерфейсы определены международными, государственными и отраслевыми стандартами. Стандарт (ГОСТ 26016—81 "Единая система стандартов приборостроения. Интерфейсы, признаки классификации и общие требования") включает четыре признака классификации: способ соединения комплектов системы (магистральный, радиальный, цепочечный, комбинированный); способ передачи информации (параллельный, последовательный, параллельно-последовательный); принцип обмена информацией (асинхронный, синхронный); режим передачи информации (двусторонняя одновременная передача, двусторонняя поочередная передача, односторонняя передача).