Смекни!
smekni.com

Ипотечное банковское кредитование в россии проблемы и перспективы развития (стр. 11 из 16)

Если предприятие в момент t использует сырье и материалы y(t) по цене c(t) для производства продукта x(t+h), который реализуется по цене p(t+h) с временным лагом h (в месяцах), то в соответствии с практикой бухгалтерского учета фактическая величина налога на добавленную стоимость J будет равна:

, где

r – ставка налога на добавленную стоимость.

Однако истинная величина НДС, которая должна была бы изыматься государством, составляет величину:

.

Тогда сумма активного инфляционного налога на добавленную стоимость:

будет исчисляться по формуле:

, где

q – среднемесячный индекс инфляции производственных затрат предприятия.

Величина T показывает финансовые потери, которые несет фирма из-за т.н. инфляции издержек. Относительная величина активных инфляционных налогов (по отношению к валовой стоимости начального периода):

составляет:

, где

b – удельный вес материальных затрат в валовом выпуске продукции фирмы.

Таким образом, чем больше затратный параметр b, темп инфляции q, производственно-реализационный цикл продукции фирмы h и налоговые ставки, тем более уязвима эта фирма в условиях инфляции. Следует отметить, что при высокой инфляции проблема активных инфляционных налогов может выступать в качестве главного фактора падения экономической активности юридических лиц и подрыва их платежеспособности.

Из сказанного вытекает, что кредитор при финансировании того или иного предприятия должен учитывать его “антиинфляционную устойчивость” путем оценки его производственных параметров, накладываемых на прогнозы инфляционных тенденций. Отсюда ясно видны проблемы, с которыми сталкивается банк:

- сложность получения истинной информации о производственных параметрах фирмы b и h;

- сложность получения прогнозов о динамике цен на оборотные средства кредитуемой фирмы, поскольку это связано с серьезными затратами на исследование соответствующих товарных рынков.

Игнорирование проблемы активных инфляционных налогов, особенно когда высокая инфляция приводит к росту риска потери выданных кредитов, может вести также к неправильному распределению кредитного портфеля в разрезе долгосрочных и краткосрочных вложений.

Риски при выдаче кредитов физическим лицам

Оценка кредитных рисков тяготеет к определенной формализации и унификации. Так, в отношении физических лиц часто используются балльные методы оценки их кредитоспособности. В этом случае выделяется группа признаков клиента (пол, возраст, профессия и т.п.), по каждому из которых проставляется соответствующий балл в зависимости от того, к какой категории относится данный человек. Сумма баллов по всем признакам сравнивается с неким критическим значением и в зависимости от результатов сравнения клиент признается либо кредитоспособным, либо некредитоспособным. Какие же проблемы возникают при такой процедуре отбора клиентов?

Во-первых, довольно сложно грамотно учесть все ключевые признаки клиента, так как многие из них плохо формализуемы.

Во-вторых, балльные оценки признаков, как правило, достаточно субъективны. Так, мужчина и женщина получают разные баллы при оценке кредитных рисков. На наш взгляд, в подобной ситуации можно было бы повысить объективность балльных оценок, вычисляя их на основе ретроспективной информации о невозвратах клиентами полученных кредитов, в т.ч. с использованием поло-возрастных критериев. В этом случае балльная оценка представляла бы собой процент возвращенных кредитов среди мужчин и женщин. Однако и такая процедура не устраняет “размытости” балльных характеристик, так как период усреднения ретроспективных данных может быть различным и выбирается субъективно. Между тем искомые баллы сильно зависят от значения анализируемого периода, что затруднено в отсутствие длительных кредитных историй.

В-третьих, используемые в расчетах балльные оценки не являются застывшими во времени величинами, поскольку сдвиги в социально-экономических условиях приводят к изменению уровня риска каждого признака. При этом пересчет балльной шкалы идет для каждого временного интервала с учетом специфики конкретного банка и выдаваемых им кредитов (краткосрочный, долгосрочный и т.п.).

В-четвертых, критическое значение суммы баллов определяется эмпирически. Никаких серьезных теоретических обоснований этой величины нет. Очевидно, что в общем случае критический порог также является “плавающей” во времени величиной и должен быть дифференцирован в зависимости от вида кредита. Любые ошибки и погрешности в определении критической величины суммы баллов могут давать принципиально неверный результат, особенно когда фактическое значение баллов лежит близко к критическому.

Таким образом, поставить на “конвейер” выдачу кредитов физическим лицам на основе количественных методик оценки рисков весьма непросто. Всегда существует потребность неформальной перепроверки результатов количественных тестов.

Риски при выдаче кредитов юридическим лицам

В отношении методов оценки рисков кредитования юридических лиц актуальны те же проблемы, что и лиц физических. Так, при расчете вероятности банкротства фирмы аналитики банка используют многофакторные модели, предполагающие процедуру взвешивания основных показателей деятельности кредитуемого юридического лица. Далее полученный интегральный показатель сравнивается с эталонными значениями (их может быть несколько). По результатам сравнения делается окончательное заключение о платежеспособности хозяйствующего субъекта.

Здесь, как и в предыдущем случае, проблема определения состава и числа взвешиваемых частных показателей однозначного решения не имеет. Вопрос же формирования системы весовых коэффициентов стоит еще более остро, чем в случае с физическими лицами, так как для количественного соизмерения роли и “веса” совершенно различных сторон жизни предприятия в данном случае нет вообще никакой объективной основы.

Между тем даже незначительные сдвиги в системе весовых коэффициентов могут принципиально изменить конечный результат проводимой экспертизы. Эта опасность особенно велика, если учесть, что на практике области высокой, невысокой и малой вероятности неплатежеспособности кредитуемого субъекта являются весьма узкими и близко примыкают друг к другу. Фактически любые числовые флуктуации в частных показателях заемщика могут спровоцировать его “переход” из одной зоны (например, более привлекательной) в другую (менее привлекательную).

Положение осложняется наличием “конкурирующих” количественных методов анализа платежеспособности фирмы, основанных на вычислении по данным бухгалтерского баланса специальных коэффициентов – индикаторов. Среди них – коэффициенты текущей ликвидности, обеспеченности собственными оборотными средствами, восстановления платежеспособности, защищенности капитала, фондовой капитализации прибыли и т.д.

Каждый из названных коэффициентов имеет эталонное значение, с которым сравнивается его расчетный аналог. При этом на практике эталонное значение является единым и “замороженным”. Между тем очевидно, что оно должно быть, во-первых, дифференцированным для различных отраслей, имеющих объективно различную структуру активов и пассивов, во-вторых, жестко привязано к темпам инфляции, рост которых способствует завышению отчетных коэффициентов – индикаторов. По-видимому, не будет ошибкой утверждение, что эталонные коэффициенты должны быть дифференцированы и в региональном разрезе, так как различные территории имеют далеко не одинаковые воспроизводственные условия и возможности для сбыта продукции, что сказывается на основных финансовых показателях деятельности коммерческих фирм и бюджетных показателях самих регионов.

Наличие “конкурирующих” методик оценки платежеспособности фирмы генерирует еще одну проблему: результаты анализа, проводимого в соответствии с разными методиками, часто дают существенно различные результаты. Столь явные логические коллизии на стадии оценки кредитных рисков могут не только смутить, но и полностью дезориентировать любого банкира. Выход из данной ситуации как будто один – отдать предпочтение одной из методик. Однако подобный подход таит в себе возможность серьезных просчетов на отдельных отрезках макроэкономического цикла.

В соответствии с вышесказанным можно заключить, что управление кредитными рисками требует высокой квалификации банковских специалистов, которые должны не только владеть основами современного количественного финансового анализа, но и обладать высокой профессиональной интуицией.

3.2. Риски и страховая защита в ипотечном кредитовании

Риски, возникающие при ипотечном кредитовании

На современной стадии развития рынка в России достигнуто определенное его насыщение широким ассортиментом товаров: объектами недвижимости, средствами производства, предметами потребления. На повестку дня встает задача формирования платежеспособного спроса, создания механизмов, позволяющих обеспечить доступ к товарам и сопутствующим услугам наибольшему кругу потребителей. К числу этих механизмов относятся, в частности, продажа товаров в рассрочку, ипотечное кредитование, различные арендные схемы, лизинг.