Смекни!
smekni.com

Кредитная политика коммерческого банка (стр. 11 из 13)

Таким образом адаптировать модель просто крайне необходимо, как для разных периодов времени, так и для разных стран и даже для разных регионов страны.

Для адаптации скоринговой модели оценки кредитоспособности физических лиц специалисту необходимо проделывать путь, подобный тому, что проделал Дюран. То есть специалисты, которые будут заниматься такой адаптацией должны быть высоко квалифицированными, и должны профессионально оценить текущую ситуацию на рынке. Результатом проделанной работы будет набор факторов с весовыми коэффициентами плюс некий порог (значение), преодолев который, человек, обратившийся за кредитом, считается способным погасить испрашиваемую ссуду плюс проценты. Полученные результаты являются по большей части субъективным мнением и, как правило, плохо подкреплены статистикой, то есть являются статистически необоснованные.

Как следствие, полученная модель не в полной мере отвечает текущей действительности.

Краеугольным камнем методики является качество исходных данных. От них напрямую зависит качество построенной модели. Чтобы обеспечить его, необходимо придерживаться следующего алгоритма:

выдвижение гипотезы - предположение о влиянии тех или иных факторов на исследуемую задачу. Данную задачу решают эксперты, полагаясь на свой опыт и знания. Результатом на данном этапе является список всех факторов;

сбор и систематизация данных - представление данных в формализованном виде, подготовка данных в определенном виде (например, соблюдение упорядоченности по времени);

подбор модели и тестирование - комбинирование различных механизмов анализа, оценка экспертами адекватности полученной модели. Возврат на предыдущие шаги при невозможности получения приемлемых результатов (например, проверка очередной гипотезы);

использование приемлемой модели и ее совершенствование;

Именно с помощью такого подхода составлены анкеты - заявки на получение кредита. Экспертами в данной области были выявлены факторы, наиболее влияющие на результат. Эту информацию и заполняют в анкетах потенциальные заемщики. Помощь в проверке гипотез может оказать реализованный в Deductor факторный анализ. Данный инструмент выявляет значимость тех или иных факторов.

Итак, задача заключается в построении модели оценки (классификации) потенциальных заемщиков. Решение задачи также должно обладать большой достоверностью классификации, возможностью адаптации к любым условиям, простотой использования модели.

Пользуясь приведенной методикой, была предложена гипотеза о том, какие факторы влияют на кредитоспособность человека. По мнению экспертов, по этим факторам можно учесть суммарный риск. Тем самым должно достигаться и отнесение потенциального заемщика к способным вернуть кредит или не способным.

"Дерево решений" (Приложение В) - один из методов автоматического анализа данных. Получаемая модель - это способ представления правил в иерархической, последовательной структуре, где каждому объекту соответствует единственный узел, дающий решение.

Сущность метода заключается в следующем:

На основе данных, за прошлые периоды строится "дерево". При этом класс каждой из ситуаций, на основе которых строится "дерево", заранее известен. В нашем случае должно быть известно, была ли возвращена основная сумма долга и проценты, и не было ли просрочек в платежах.

При построении "дерева" все известные ситуации обучающей выборки сначала попадают в верхний узел, а потом распределяются по узлам, которые в свою очередь также могут быть разбиты на дочерние узлы. Критерий разбиения - это различные значения какого-либо входного фактора. Для определения поля, по которому будет происходить разбиение, используется показатель, называемый энтропия - мера неопределенности. Выбирается то поле, при разбиении по которому устраняется больше неопределенности. Неопределенность тем выше, чем больше примесей (объектов, относящихся к различным классам) находятся в одном узле. Энтропия равна нулю, если в узле будут находиться объекты, относящиеся к одному классу.

Полученную модель используют при определении класса (Давать / Не давать кредит) вновь возникших ситуаций (поступила заявка на получение кредита).

При существенном изменении текущей ситуации на рынке, "дерево" можно перестроить, т.е. адаптировать к существующей обстановке.

Для демонстрации подобной технологии будет использоваться программа Tree Analyzer из пакета Deductor ver.3. В качестве исходных данных была взята выборка, состоящая из 1000 записей, где каждая запись - это описание характеристик заемщика плюс параметр, описывающий его поведение во время погашения ссуды. При обучении дерева использовались следующие факторы, определяющие заемщика: "N Паспорта"; "ФИО"; "Адрес"; "Размер ссуды"; "Срок ссуды"; "Цель ссуды"; "Среднемесячный доход"; "Среднемесячный расход"; "Основное направление расходов"; "Наличие недвижимости"; "Наличие автотранспорта"; "Наличие банковского счета"; "Наличие страховки"; "Название организации"; "Отраслевая принадлежность предприятия"; "Срок работы на данном предприятии"; "Направление деятельности заемщика"; "Срок работы на данном направлении"; "Пол"; "Семейное положение"; "Количество лет"; "Количество иждивенцев"; "Срок проживания в данной местности"; "Обеспеченность займа"; "Давать кредит". При этом поля: "N Паспорта", "ФИО", "Адрес", "Название организации" алгоритм уже до начала построения дерева решений определил как непригодные (рисунок 3.3) по причине практической уникальности каждого из значений.

Целевым полем является поле "Давать кредит", принимающий значения "Да" (True) и "Нет" (False). Эти значения можно интерпретировать следующим образом: "Нет" - плательщик либо сильно просрочил с платежами, либо не вернул часть денег, "Да" - противоположность "Нет". Факторы для построения дерева были собраны и консолидированы в хранилище данных Deductor Warehouse. (Приложение Г)

Методология хранилища такова, что информация хранится в процессах, каждый процесс имеет определенный набор измерений и фактов. Т.е. процесс реализован по стандартной схеме "Звезда", в центре которой хранятся факты, а измерения являются лучами. В данном случае процесс отображает выдачу кредита заемщику. Наиболее ценной информацией процесса является статус кредита. Хороший кредит - тот, который заемщик вернул в срок и в полном объеме, плохой - обратная ситуация.

При построении модели оценки кредитоспособности огромную помощь эксперту окажет разнообразная аналитическая отчетность. Поскольку данные в хранилище представлены в многомерном виде, то, несомненно, наиболее удобно получать отчетность в виде набора срезов кросс - таблиц.

Анализируя полученное дерево решений можно сделать вывод, что при помощи дерева решений можно проводить анализ значащих факторов. Такое возможно благодаря тому, что при определении параметра на каждом уровне иерархии, по которому происходит разделение на дочерние узлы, используется критерий наибольшего устранения неопределенности. Таким образом, более значимые факторы, по которым проводится классификация, находятся на более близком расстоянии (глубине) от корня дерева, чем менее значимые. Например, фактор "Обеспеченность займа" более значим, чем фактор "Срок проживания в данной местности". Фактор "Основное направление расходов" значим только в сочетании с другими факторами. Еще одним интересным примером значимости различных факторов служит отсутствие в построенном дереве параметра "Наличие автотранспорта", что говорит о том, что на сегодняшний день это наличие не является определяющим при оценке кредитоспособности физического лица.

Можно заметить, что такие показатели как "Размер ссуды", "Срок ссуды", "Среднемесячный доход" и "Среднемесячный расход" вообще отсутствуют в полученном дереве. Данный факт можно объяснить тем, что в исходных данных присутствует такой показатель как "Обеспеченность займа", и т.к этот фактор является точным обобщением четыре вышеописанных показателей, алгоритм построения дерева решений выбрал именно его.

Очень важной особенностью построенной модели является то, что правила, по которым определяется принадлежность заемщика к той или иной группе записаны на естественном языке.

Правильно построенное на данных прошлых периодов дерево решения обладает одной еще очень важной особенностью. Эта особенность называется способность к обобщению. То есть если возникает новая ситуация (обратился потенциальный заемщик), то, скорее всего, такие ситуации уже были и достаточно много. Вследствие чего можно с большой долей уверенности сказать, что вновь обратившийся заемщик поведет себя так же, как и те заемщики, характеристики которых очень похожи на характеристики вновь обратившегося. Также можно определять принадлежность потенциального заемщика к одному из классов. Для этого необходимо воспользоваться диалоговым окном "Эксперимент".

Используя такой подход можно устранить сразу оба вышеописанных недостатка скоринговой системы оценки кредитоспособности. То есть:

Стоимость адаптации сводится практически к минимуму за счет того, что алгоритмы построения модели классификации (дерево решений) - это самоадаптируемые модели (вмешательство человека минимально).

Качество результата достаточно велико за счет того, что алгоритм выбирает наиболее значимые факторы для определения конечного ответа. Плюс ко всему полученный результат является статистически обоснованным.