О том, как трудно создать крупный рефлектор, мы уже говорили. Радиотелескоп с поперечником в десятки метров построить легче. Ведь если даже этот телескоп будет принимать радиоволны с длиной волны 1,25 см, то шероховатости не должны по размерам превышать 1 мм — допуск вполне технически осуществимый.
В некоторых радиотелескопах, рассчитанных на прием радиоволн с длиной, измеряемой многими метрами, зеркала делаются не сплошные, а сетчатыми. Этим значительно уменьшается вес инструмента, ив то же время, если размеры ячеек малы в сравнении с длиной радиоволн, решетчатое зеркало действует как сплошное. Иначе говоря, для радиоволн отверстия в зеркале радиотелескопа, в сущности, являются неощутимыми «неровностями».
Подчеркнем одну замечательную особенность описываемых радиотелескопов — они могут работать на различных длинах волн. Ведь очевидно, что свойство параболических зеркал концентрировать излучение в фокусе не зависит от длины волны этого излучения. Поэтому, меняя облучатель, то есть приемную антенну, можно «настраивать» радиотелескоп на желаемую длину волн. При этом, конечно, требуется изменить частоту радиоприемника.
Чем больше размеры зеркала, тем больше излучения оно собирает. Количество собираемого излучения, очевидно, пропорционально площади зеркала. Значит, чем больше зеркало, тем чувствительнее телескоп, тем более слабые источники излучения удается наблюдать — ведется ли прием на радиоволнах или в лучах видимого света.
Замечательно, что радиотелескопы можно устанавливать в любом пункте страны. Ведь они совсем не зависят от капризов погоды или прозрачности атмосферы. С помощью радиотелескопов можно исследовать Вселенную хоть в проливной дождь!
4.Борьба с помехами.
Нелегко создать сплошное металлическое зеркало с поперечником в несколько десятков метров, да еще установить так, чтобы, перемещая зеркало с удивительной плавностью, его можно было нацелить на любой участок неба. Каждое такое творение рук человеческих есть истинное чудо современной техники.
Иногда зеркало радиотелескопа, как уже говорилось, делают очень большим, но неподвижным. При высокой чувствительности подобный телескоп ограничен в своих возможностях — он всегда направлен на одну и ту же точку неба.
Впрочем, и неподвижный телескоп все-таки движется, ведь он находиться на поверхности Земли, а земной шар непрерывно и равномерно вращается вокруг своей воображаемой оси. Поэтому в поле зрения неподвижного радиотелескопа постоянно появляются все новые и новые небесные тела, причем наблюдению доступен довольно широкий круговой пояс неба. Разумеется, через сутки, когда Земля совершит полный оборот, картины в поле зрения радиотелескопа снова начнут повторяться.
Радиоприемники присоединенные к антенне радиотелескопа, очень чувствительны. Если, например, к ним просто подключить какой-нибудь проводник, то приемник станет реагировать на беспорядочные тепловые движения в этом проводнике. Яснее говоря, тепловое движение электронов вызывает на концах проводника беспорядочно меняющиеся напряжения, пропорциональные температуре проводника. В приемнике эти процессы приобретут характер «шумов».
Хотя мощность таких помех от антенного устройства ничтожно мала, они все же, как это не обидно, подчас в десятки, а иногда и в сотни раз превосходят мощность космического радиоизлучения. Мешают также и шумы, возникающие в самом приемнике при работе транзисторов.
Шумы, порожденные аппаратурой, как бы маскируются под космическое излучение. Они похожи друг на друга и усиливаются в приемнике одновременно. Этим обстоятельством ограничивается чувствительность современных радиотелескопов. Однако с помощью большого усложнения аппаратуры удается зарегистрировать сигналы в сто раз более слабые, чем шумы аппаратуры.
При изучении слабых источников космических радиоволн применяют довольно сложные и хитроумные методы и устройства. позволяющие уловить неуловимое. И здесь победа остается в конце концов за человеком. Рост техники радиоастрономии происходит очень бурно, и с каждым годом радиотелескопы становятся все более и более чувствительными.
Впрочем, уже сейчас чувствительность радиотелескопов вызывает удивление. Если сравнить энергию излучения, воспринимаемую самыми лучшими из современных радиотелескопов, с энергией видимого света, посылаемого звездами, то окажется, что радиотелескопы в тысячи раз чувствительны гигантских телескопов-рефлекторов. Среди всевозможных приемников электромагнитных волн радиотелескопы не имеют себе равных.
5.О зоркости радиотелескопов.
Благодаря сложным оптическим явлениям лучи от звезды, уловленные телескопом, сходятся не в одной точке (фокусе телескопа), а в некоторой небольшой области пространства вблизи фокуса, образуя так называемое фокальное пятно. В этом пятне объектив телескопа конденсирует электромагнитную энергию светила, уловленную телескопом. Если взглянуть в телескоп, звезда нам покажется не точкой, а кружочком с заметным диаметром. Но это не настоящий диск звезды, а только ее испорченное изображение, вызванное несовершенством телескопа. Мы видим созданное телескопом фокальное пятно.
Чем больше диаметр объектива, тем меньше и размеры фокального пятна.
С величиной фокального пятна тесно связана разрешающая способность телескопа. Так называют наименьшее расстояние между двумя источниками излучения, которые данный телескоп дает различить в отдельности. Если, например, в двойной звезде обе звезды так близки на небе друг к другу, что их изображения, создаваемые телескопом, попадают практически внутрь фокального пятна, двойная звезда покажется в телескоп одиночной.
Îïòè÷åñêèå òåëåñêîïû îáëàäàþò âåñüìà áîëüøîé ðàçðåøàþùåé ñïîñîáíîñòüþ.  íàñòîÿùåå âðåìÿ íàèëó÷øèå èç îïòè÷åñêèõ òåëåñêîïîâ ñïîñîáíû «ðàçäåëèòü» äâîéíûå çâåçäû ñ ðàññòîÿíèåì ìåæäó ñîñòàâëÿþùèìè â 0,1 ñåêóíäû äóãè! Ïîä òàêèì óãëîì âèäåí ÷åëîâå÷åñêèé âîëîñ íà ðàññòîÿíèè 30 ì.
Ðàäèîòåëåñêîïû âîñïðèíèìàþò âåñüìà äëèííîâîëíîâîå èçëó÷åíèå. Ïîýòîìó ôîêàëüíîå ïÿòíî â ðàäèîòåëåñêîïàõ îãðîìíî. È ñîîòâåòñòâåííî ðàçðåøàþùàÿ ñïîñîáíîñòü ýòèõ èíñòðóìåíòîâ âåñüìà íèçêà. Îêàçûâàåòñÿ, íàïðèìåð, ÷òî ðàäèîòåëåñêîï ñ äèàìåòðîì çåðêàëà 5 ì ïðè äëèíå ðàäèîèçëó÷åíèÿ 1 ì ñïîñîáåí ðàçäåëèòü èñòî÷íèêè èçëó÷åíèÿ, åñëè îíè îòñòîÿò äðóã îò äðóãà áîëüøå ÷åì íà äåñÿòü ãðàäóñîâ!
Äåñÿòü ãðàäóñîâ—ýòî äâàäöàòü âèäèìûõ ïîïåðå÷íèêîâ Ëóíû. Çíà÷èò, óêàçàííûé ðàäèîòåëåñêîï íå ñïîñîáåí «ðàçãëÿäåòü» â îòäåëüíîñòè òàêèå ìåëêèå äëÿ íåãî íåáåñíûå ñâåòèëà, êàê Ñîëíöå èëè Ëóíà.
ßñíî, ÷òî íèçêàÿ ðàçðåøàþùàÿ ñïîñîáíîñòü îáû÷íûõ íåáîëüøèõ ðàäèîòåëåñêîïîâ — áîëüøîé íåäîñòàòîê; äàæå ïðè îãðîìíûõ ðàçìåðàõ çåðêàëà îíà, êàê ïðàâèëî, óñòóïàåò ðàçðåøàþùåé ñèëå ÷åëîâå÷åñêîãî ãëàçà (íå ãîâîðÿ óæå îá îïòè÷åñêèõ òåëåñêîïàõ). Êàê æå ìîæíî óñòðàíèòü ýòî ïðåïÿòñòâèå?