Стр.
Введение | 6 |
1.Типы информационных массивов и единицы контент-анализа | 8 |
1.1 «Физические» единицы | 8 |
1.2 Структурно-семиотические единицы | 10 |
1.3 Понятийно-тематические единицы | 10 |
1.4 Референциальные и квазиреференциальные единицы | 11 |
1.5 Пропозициональные единицы и оценки | 11 |
1.6 Макроструктурные единицы | 12 |
1.7 Единицы, представляющие результаты концептуальных операций | 13 |
1.8 . «Поэтические» единицы | 13 |
2 Частотные и системные характеристики в контент-анализе | 14 |
2.1 Единицы, категории и признаки | 14 |
2.2 «Фронтальный» и «рейдовый» контент-анализ | 14 |
2.3 Обработка, презентация и интерпретация результатов | 15 |
Литература | 18 |
Ведение
Контент-анализ,количественный анализа текстов и текстовых массивов с целью последующей содержательной интерпретации выявленных числовых закономерностей. Основная идея контент-анализа проста и интуитивно наглядна. При восприятии текста и особенно больших текстовых потоков мы достаточно хорошо ощущаем, что разные формальные и содержательные компоненты представлены в них в разной степени, причем эта степень по крайней мере отчасти поддается измерению: ее мерой служит то место, которое они занимают в общем объеме, и/или частота их встречаемости. Через все выступления X-а красной нитью проходит тема Y; X постоянно обращался в своей речи к проблеме Y; Он не упускал ни одного случая, чтобы не лягнуть Z-а; Ну, задудел в свою дуду, – все эти выражения, число которых можно легко увеличить, свидетельствуют об осознании нами такого феномена, как наличие в изливающемся на нас информационном потоке некоторых настойчиво повторяющихся тем, образов, ссылок на проблемы, оценок, утверждений (Карфаген должен быть разрушен или Российская экономика задыхается без инвестиций), аргументов, формальных конструкций, конкретных имен и т.д. Более того, подобно тому как в мире механики мы ощущаем не скорость, а ускорение, так и при восприятии текста мы особенно хорошо осознаем именно динамику содержания – те случаи, когда, например, кого-то вдруг перестают или начинают бранить или когда в текстах вдруг появляется какая-то новая тема.
Замысел контент-анализа заключается в том, чтобы систематизировать эти интуитивные ощущения, сделать их наглядными и проверяемыми и разработать методику целенаправленного сбора тех текстовых свидетельств, на которых эти ощущения основываются. При этом предполагается, что вооруженный такой методикой исследователь сможет не просто упорядочить свои ощущения и сделать свои выводы более обоснованными, но даже узнать из текста больше, чем хотел сказать его автор, ибо, скажем, настойчивое повторение в тексте каких-то тем или употребление каких-то характерных формальных элементов или конструкций может не осознаваться автором, но обнаруживает и определенным образом интерпретируется исследователем – отсюда принадлежащее социологу А.Г.Здравомыслову полушутливое определение контент-анализа как «научно обоснованного метода чтения между строк». Реально главной отличительной чертой контент-анализа является не его декларируемая во многих определениях «систематичность» и «объективность» (эти черты присущи и другим методам анализа текстов), а его квантитативный характер. Контент-анализ – это прежде всего количественный метод, предполагающий числовую оценку каких-то компонентов текста, могущую дополняться также различными качественными классификациями и выявлением тех или иных структурных закономерностей. Поэтому наиболее удачным определением контент-анализа можно считать то, которое зафиксировано в относительно недавней книге книге Мангейма и Рича: контент-анализ – это систематическая числовая обработка, оценка и интерпретация формы и содержания информационного источника. С точки зрения лингвистов и специалистов по информатике, контент-анализ является типичным примером прикладного информационного анализа текста, сводящегося к извлечению из всего разнообразия имеющейся в нем информации каких-то специально интересующих исследователя компонентов и представлению их в удобной для восприятия и последующего анализа форме. Многочисленные конкретные варианты контент-анализа различаются в зависимости от того, каковы эти компоненты и что именно понимается под текстом. Конкретные прикладные цели контент-анализа также варьируют в широких пределах. Еще в 1952 американский исследователь Б.Берелсон сформулировал 17 целей, воспроизводимых с тех пор в пособиях по контент-анализу; в их числе – описание тенденций в изменении содержания коммуникативных процессов; описание различий в содержании коммуникативных процессов в различных странах; сравнение различных СМИ; выявление используемых пропагандистских приемов; определение намерений и иных характеристик участников коммуникации; определение психологического состояния индивидов и/или групп; выявление установок, интересов и ценностей (и, шире, систем убеждений и «моделей мира») различных групп населения и общественных институтов; выявление фокусов внимания индивидов, групп и социальных институтов и др. Исторически контент-анализ – наиболее ранний систематический подход к изучению текста. Самый первый упоминаемый в литературе контент-аналитический опыт (прикладная цель которого выглядит очень узнаваемой) – это проведенный в Швеции в 18 в. анализ сборника из 90 церковных гимнов, прошедших государственную цензуру и приобретших большую популярность, но обвиненных в несоответствии религиозным догматам. Наличие или отсутствие такового соответствия и определялось путем подсчета в текстах этих гимнов религиозных символов и сравнения их с другими религиозными текстами, в частности запрещенных церковью текстами «моравских братьев». В конце 19 – начале 20 вв. в США появились первые контент-аналитические исследования текстов массовой информации. Их мотивация выглядит удивительно знакомой: авторы задавались целью продемонстрировать прискорбное «пожелтение» тогдашней нью-йоркской прессы. В 1930–1940-х годах были выполнены исследования, признаваемые ныне классикой контент-анализа, прежде всего работы Г.Лассуэлла, деятельность которого продолжалась и в послевоенные годы. Во время Второй мировой войны имел место самый, пожалуй, знаменитый эпизод в истории контент-анализа – это предсказание британскими аналитиками времени начала использования Германией крылатых ракет «Фау-1» и баллистических ракет «Фау-2» против Великобритании, сделанное на основе анализа (совместно с американцами) внутренних пропагандистских кампаний в Германии. Начиная с 1950-х годов контент-анализ как исследовательский метод активно используется практически во всех науках, так или иначе практикующих анализ текстовых источников – в теории массовой коммуникации, в социологии, политологии, истории и источниковедении, в культурологии, литературоведении, прикладной лингвистике, психологии и психиатрии. Разнообразие конкретных проектов, реализованных за примерно 70-летнюю историю интенсивного использования контент-анализа, очень велико. Среди интересных проектов, выполненных за последние годы в России, можно назвать исследование образов и метафор, использовавшихся в 1996–1997 в ходе развернутой тогда в российской прессе дискуссии о национальной идее, а также выполненный в тот же период анализ текстов левонационалистической оппозиции. Локальные контент-аналитические проекты периодически реализуются в ходе различного рода социологических мониторингов – общенациональных и региональных. Наиболее широкое распространение контент-анализ получил в теории массовой коммуникации, политологии и социологии. Этим отчасти объясняется тот факт, что иногда этот термин используется как обобщающий для всех методов систематического и претендующего на объективность анализа политических текстов и текстов, циркулирующих в каналах массовой коммуникации. Однако такое расширительное понимание контент-анализа неправомерно, поскольку существует ряд исследовательских методов – либо специально разработанных для анализа политических текстов (например, метод когнитивного картирования), либо применимых и применяемых для этой цели (например, метод семантического дифференциала или различные подходы, предполагающие изучение структуры текста и механизмов его воздействия), – которые не могут быть сведены к стандартному контент-анализу даже при максимально широком его понимании.
Тем не менее контент-анализ действительно занимает среди аналитических методов особое место в силу того, что является среди них самым технологичным и в силу этого в наибольшей степени подходящим для систематического мониторинга больших информационных потоков. Помимо этого, контент-анализ достаточно гибок для того, чтобы в его рамки мог быть успешно «вписан» весьма разнообразный круг конкретных типов исследований. Наконец, будучи в основе своей количественным методом (хотя и содержащим немалую качественную составляющую), контент-анализ в определенной степени поддается формализации и компьютеризации.
1. ТИПЫ ИНФОРМАЦИОННЫХ МАССИВОВ И ЕДИНИЦЫ КОНТЕНТ-АНАЛИЗА
Основа контент-анализа – это подсчет встречаемости некоторых компонентов в анализируемом информационном массиве, дополняемый выявлением статистических взаимосвязей и анализом структурных связей между ними, а также снабжением их теми или иными иными количественными или качественными характеристиками. Отсюда понятно, что главная предпосылка контент-анализа – это выяснение того, что считать; иными словами, определение единиц анализа. Единицы эти в зависимости от целей анализа, типа информационного массива, а также ряда дополнительных причин могут быть (и реально бывают) весьма разнообразными. К ним предъявляются два естественных, но, к сожалению, обычно плохо совместимых требования. С одной стороны, они должны легко и по возможности однозначно идентифицироваться в тексте; в идеале хотелось бы, чтобы их выявление вообще могло быть алгоритмизовано. Понятно, что такому требованию лучше всего удовлетворяют формальные элементы текста или же элементы, имеющие четко выраженные и однозначные формальные соответствия, например слова. С другой стороны, от единиц контент-анализа чаще всего требуется некая субъективная, да к тому же еще и зависящая от контекста значимость, делающая их распределение и динамику такого распределения диагностичными для выявления изменений в индивидуальном и общественном сознании, системах убеждений и т.д. – иными словами, единицы должны быть интересными для последующей (политологической, культурологической, социологической и т.д.) интерпретации. Между тем такие единицы (например, темы) носят собственно содержательный характер, и упоминание их в тексте может осуществляться многими разнообразными способами. Их идентификация в общем случае предполагает семантический анализ текста, проблема автоматизации которого, несмотря на многолетние усилия лингвистов и программистов, далека от решения. Характеристику единиц контент-анализа необходимо предварить кратким соображением о природе анализируемого информационного массива. В самом определении метода контент-анализа нет ничего, что препятствовало бы применению его к отдельно взятому тексту; более того, примеры такого анализа известны. Тем не менее существует ряд причин, по которым объектом контент-аналитических проектов обычно является не отдельный текст, пусть даже значительный по объему, а именно информационный массив, или информационный поток, состоящий из большого количества текстов. Во-первых, статистические закономерности проявляются тем более отчетливо, чем больше объем выборки. Во-вторых, большинство целей контент-анализа предопределяют его тяготение к компаративности; аналитиков чаще всего интересуют не одномоментные срезы, а динамика изменений, а если и срезы, то, как правило, «пестрые», отражающие, например, различные СМИ или сознание различных социальных групп. Наконец, при всем разбираемом ниже разнообразии единиц контент-анализа наиболее популярными являются различные макроединицы: темы и/или проблемы, пропозиции, образы и идеологемы. Таковых в отдельно взятых текстах и особенно в небольших по объему текстах СМИ обычно немного, да и новые макроединицы появляются не столь часто, поэтому оценить их динамику можно лишь на большом временном промежутке или при широком «горизонтальном сопоставлении». Таким образом, идея контент-анализа предполагает анализ больших информационных массивов; с другой стороны, его относительная дешевизна и технологичность делают такой анализ принципиально возможным. Поэтому не приходится удивляться тому, что в истории контент-анализа имеются такие проекты, как анализ 427 школьных учебников, 481 частной беседы, 4022 рекламных слоганов, 8039 (в 1938) и 19 533 (в 1952) редакционных статей или 15 000 персонажей в 1000 часов телевизионного эфирного времени. Конкретное разнообразие единиц контент-анализа практически безгранично, однако среди них можно выделить несколько основных типов. (Классификация, приводимая ниже, построена с учетом типологии К.Криппендорфа, однако отличается от нее весьма существенно.)