Смекни!
smekni.com

Разработка настенного поворотного крана (стр. 2 из 6)

2.1.2.1 Определяем момент на барабане

Мб = Dб * δ/2 [3;31] (2.19)

где δ – усилие на барабане, кН

Мб = 0.186 * 12.5/2 = 1.162 кН*м

2.1.2.2 Определяем мощность двигателя

Pдв = 1.2*Рбобщ [3;44] (2.21)

ηобщ = ηр * ηп [3;45] (2.22)

где ηр – КПД редуктора

ηп – КПД подшипников

ηобщ = 0.92 * 0.992 = 0.86

Рдв = 1.2 * 0.33/0.86 = 0.9 кВт

Выбираем двигатель 4А90LВ8У3, Рдв = 1.1 кВт

n = 750 об/мин; Ммах = 3.5 кг * м,

маховый момент 0.85 кг * м2, вес = 5.1 кг.

Рис. 2.3 Электродвигатель.

Таблица 2.3

Параметры электродвигателя.

L1 L10 L0 L31 L30 h h1 h31 h10 b1 d1 d30 d10 b0 b10
50 125 140 56 350 90 7 243 11 8 24 208 10 160 140

2.1.1.6 Определяем частоту вращения барабана

nб = V/π*Dб [3;41] (2.23)

nб = 16/3.14 * 0.186 = 27.6 об/мин

2.1.1.7 Определяем передаточное отношение редуктора.

i = ndв/nб [3;45] (2.24)

где nдв – частота вращения двигателя об/мин,

nб – частота вращения барабана об/мин.

i = 750/27.6 = 47.8

Для механического подъёма груза выбираем редуктор червячного типа РГУ. Наиболее подходящим для установки является редуктор РГУ – 80 с передаточным числом i = 49. Этот редуктор рассчитан на передачу мощности 3.5 кВт при числе оборотов ведущего вала 750 об/мин, вес 36.7 кг.

Редукторы типа РГУ обладают наибольшими размерами и малыми весами и при этом они обладают большими передаточными отношениями.

Выбираем этот редуктор, т.к. его надо устанавливать на площадке, устанавливаемой на консоли крана. Он обладает небольшой массой и сильно не нагрузит металлоконструкцию крана. Проверяем соответствие редуктора передаточному числу.

ip * pip/ip * 100% ≤ 4% [3;46] (2.25)

где ipp – расчётное передаточное число редуктора

ip – передаточное число редуктора

47.8 – 49/49 * 100% = 2.45% ≤ 4%

Условие выполняется. Редуктор подходит.

Рис. 2.4 Редуктор.

Таблица 2.4

Параметры редуктора.

A B B1 H H0 h L L1 S S1 S2 S3 k
80 230 116 315 115 22 255 295 215 186 150 224 45

2.1.1.8 Определяем пусковой момент

Мпуск = Мп min + Мп max /2 [3;143] (2.26)

где Мп min – ½ Мmax = ½ * 3.5 = 1.75 кН*м

Мпуск = 1.76 + 3.5/2 = 2.6 кН*м

2.1.1.9 Определяем наименьший момент двигателя

Мном = 0.75 * Pдв/nдв [3;144] (2.27)

где Pдв – мощность двигателя, кВт

nдв – частота вращения двигателя, об/мин

Мном = 0.75 * 1.1/750 = 1.47 кН*м

2.1.1.10 Определяем статический крутящий момент на тормозном валу

Мст = Q * Dб * ηo/η * m * io [3;456] (2.28)

где Q – грузоподъёмность, кг

Dб – диаметр барабана,

ηо – КПД редуктора,

m – кратность полиспаста,

io – передаточное число редуктора.

Мст = 2500 * 0.186 * 0.92/n * η * 49 = 2.18 кг * м

2.1.1.11 Определяем тормозной момент

Мт = к * Мст[3;148] (2.29)

где к – коэффициент запаса торможения к = 1.75

Мт = 1.75 * 2.18 = 3.82 кг * м

Выбираем тормоз ТКТ с короткоходовыми электромагнитами ТКТ – 100 Мт = 40 Н*м

длина рычага = 100 мм,

длина колодки = 70 мм,

длина тормозного пути 100 мм

Рис. 2.5 Тормоз колодочный

Таблица 2.5

Параметры тормоза колодочного

А Е F H K M N O R S T δ h δ1 d a c
369 130 233 250 40 65 46 37 325 110 8x8 4 100 6 13 15 120

2.1.2 Расчёт траверсы крюковой подвески и выбор крюка

2.1.3.1 Выбираем крюк грузоподъёмностью 5 т.

Подходит для механизмов с машинным приводом, все краны с подвеской 72 м. (ГОСТ 6627 – 53)

Рис. 2.6 Крюк.

Таблица 2.6

Размеры крюка, мм

а о d d1 do l l1 l2 M R3 R3 R5 R6 R7 R8
85 65 55 50 48 120 50 70 42 110 28 85 95 12 2

2.1.3.2 Производим проверку траверсы на прочность

Рис 2.7 а) траверса, б) серьга.

Проверяем прочность траверсы по максимальным напряжениям изгиба в сечении А – А

σи = Gгр * l * в/4(В – d2) * h2 ≤ [σи] [4;243] (2.30)

где Gгр – грузоподъёмность вместе с весом крюка, т

Gгр = Ст + gк[4;244] (2.31)

gк – вес крана с подвеской

Gгр = 2.5 * 0.072 = 2.572 т

l – расстояние между центрами щёчек, м

в – ширина щёчки, м

В – ширина траверсы, м

h – высота траверсы, м

d2 – диаметр оси цапфы, м

и] – допускаемое напряжение изгиба [σи] = 80 МПа

σи = 2.572 * 0.09 * 0.046/4(0.08 – 0.05) * 0.052 = 13.55 МПа < 80 МПа

Проверяем цапфы на изгиб

σи = Gгр * δ * 2 + δ1/η * 0.1 * dy3 ≤ [σи] [4;245] (2.32)

δ – толщина щёчки, м

dy – диаметр цапфы, м

[σи] = 70 МПа

σи = 2.572 * 0.008 * 2 + 0.003/2 * 0.1 * 0.033 = 48 МПа ≤ 70 МПа

Поверхность соприкосновения цапфы и нижней щёчки проверяют по допускаемому давлению.

g = Gгр/dy * δ * η ≤ [g]

g – удельное давление,

[g] – допускаемое удельное давление [g] = 30 МПа

g = 9.572/η * 0.03 * 0.08 = 25.4 МПа < 30 МПа

Проверяется на растяжение в вертикальном и горизонтальном сечениях, которые ослаблены отверстиями для цапфы.

В горизонтальной плоскости.

σр = σгр/2(в - dy)δ ≤ [σр] [4;250] (2.34)

р] - допускаемое напряжение на растяжение [σр] =70 МПа

σр = 2.572/2 * (0.046 – 0.03 0 * 0.008 = 14.5 МПа ≤ 70МПа

В вертикальной плоскости.

σ’ = g * 2R2/R2 – (dy/2)2 ≤ [σ’] [4;268] (2.35)

где R – радиус, м

[σ’] – допускаемое напряжение на растяжение

σ’ = 25.4 * 2 * 0.0252/0.0252 – (0.03/2)2 = 18.5 МПа ≤ 70МПа

Крюковая подвеска выдержит все нагрузки на неё.

2.2 РАСЧЁТ МЕХАНИЗМА КРАНА

Механизм поворота крана состоит из открытой цилиндрической зубчатой передачи, колесо закреплено на колонне крана, которая получает вращение через коническую передачу. Вращение осуществляется вручную при помощи рукоятки.

Выбираем рукоятку с плечом 0.4 кг и длинной ручкой 0.3 м. Суммарное усилие рабочего, применяемое к рукоятке

Р = р * z * φ [4;143] (2.36)

Р – усилие, развиваемое рабочим = 200 Н

z – число рабочих = 2

φ – коэффициент, учитывающий неодновременность приложений усилий рабочим = 0.08

Р = 0.8 * 2 * 200 = 320 Н

Средняя скорость движения при ручном приводе для рукояток = 0.6 м/сек

2.2.1 Расчёт открытой цилиндрической зубчатой передачи

2.2.1.1 В качестве материала шестерни применяем сталь 45, улучшенную, с пределом прочности σв = 800 МПа.

2.2.1.2 Принимаем допускаемые напряжения

Касательное допускаемое напряжение [σи] = 418 МПа

Изгибное допускаемое напряжение [σf] = 198.8 МПа

2.2.1.3 Определяем межосевое расстояние

аω = 4950 (i + 1)

[6;89](2.37)

Мкр – крутящий момент на валу колеса