Смекни!
smekni.com

Компонентный и факторный анализ (стр. 3 из 7)

Запишем матрицу

=

Для получения нормализованного вектора перехода от исходных признаков к главным компонентам необходимо решить систему уравнений:

, где
- соответствующее собственное число. После получения решения системы необходимо затем нормировать полученный вектор.

Для решения данной задачи воспользуемся функцией eigenvec системы MathCAD, которая возвращает нормированный вектор для соответствующего собственного числа.

В нашем случае первых четырех главных компонент достаточно для достижения заданного уровня информативности, поэтому матрица U (матрица перехода от исходного базиса к базису из собственных векторов)

Строим матрицу U, столбцами которой являются собственные вектора:

U=

.

Матрица весовых коэффициентов:

А=

.

Коэффициенты матрицы А являются коэффициентами корреляции ме­жду центрировано – нормированными исходными признаками и ненормиро­ванными главными компонентами, и

показывают наличие, силу и направле­ние линейной связи между соответствующими исходными призна­ками и соответствующими главными компонентами.

2.2 Экономическая интерпретация полученных главных компонент

Коэффициент

матрицы А представляют собой коэффициенты корреляции между i-ой главной компонентой и j-ым исходным признаком.

Так как первая главная компонента зависит главным образом от первого (X5 – удельный вес рабочих в составе ППП) и третьего (X7 – коэффициент сменности оборудования) исходного признака, следовательно ее можно обозначить как «Эффективность основного производства». Вторая главная компонента тесно взаимосвязана со вторым (X6 – удельный вес покупных изделий) и четвертым (X9 – удельный вес потерь от брака) исходными признаками, ее можно обозначить как «Удельный вес затрат не приносящих прибыль». Третья главная компонента взаимосвязана с четвертым исходным признаком, поэтому ее обозначим «Удельный вес потерь от брака».

2.3 Матрица наблюденных значений главных компонент.

Мы получили ненормированные главные компоненты. Проведя нормирование полу­ченных центрированных

, полу­чим
. При нормировании
дисперсия должна рав­няться 1,
. Для этого нужно разделить
на среднеквадратическое отклонение
.

Обозначим

- это матрица весовых коэффициентов, с помощью которой уста­навливается связь между нормированными исходными признаками и нормирован­ными главными компонентами.

Модель метода главных компонент:

где

- значение I-той стандартизированной переменной по j-ому объекту наблюдения;

- m-тая главная компонента по j-ому объекту наблюдения;

- весовой коэффициент m-той главной компоненты и I-той переменной.

Эту матрицу будем строить, исходя из соотношения

,

где

- диагональная матрица, на главной диагонали которой стоят дисперсии соответствующих главных компонент в минус первой степени;

- транспонированная матрица факторных нагрузок;

Х- матрица наблюденных значений исходных признаков.

Данная формула хороша тем, что она верна и в том случае, если матрица

А не квадратная (т.е. выделено m<n главных компонент).

«Наблюденные» значения главных компонент приведены в Приложениях.

2.4 Классификация объектов.

Проведем классификацию объектов по первым двум главным компонентам.

Рис.1: Объекты в пространстве главных компонент.

На рис.1 видно, что первая группа характеризуется положительными значениями первой главной компоненты, а вторая группа характеризуется отрицательными значениями первой главной компоненты. При этом значения второй главной компоненты схожи у обеих групп.

2.5 Уравнение регрессии на главные компоненты.

Построим уравнение регрессии на выделенные главные компоненты методом пошаговой регрессии, который предполагает, что на каждом шаге мы будем включать в уравнение регрессии тот признак, который будет вызывать наибольшее приращение коэффициента детерминации.

Процесс будет остановлен, когда величина

достигнет своего максимума.

В итоге уравнение регрессии примет вид:

Подробный анализ, выполненный с помощью программы “Stadia”, приведен в Приложениях.

3.Метод главных факторов

Мы ставим перед собой задачу снижения размерности признакового пространства. С самого начала будем исходить из того, что мы n признаков попытаемся объяснить с помощью меньшего количества m-ла­тентных признаков - общих факторов, где m<<n, а различия между исход­ными признаками и введёнными общими факторами, точнее их линейными комбинациями учтём с помощью так называемых характерных факторов.

Конечная цель статистического исследования, проводимого с привлече­нием аппарата факторного анализа, как правило, состоит в выявлении и интерпретации латентных общих факторов с одновременным стремлением ми­нимизировать как их число, так и степень зависимости

от своих специфиче­ских остаточных случайных компонент
.

Итак, в нашем распоряжении последовательность многомерных наблюде­ний Х.

Предполагаем, что каждый признак

является результатом воздейст­вия m гипотетических общих и одного характерного факторов:

(1)

- весовые коэффициенты;

- общие факторы, которые подлежат определению;

- характерный фактор для i-ого исходного признака;

- весовой коэффициент при i-ом характерном факторе.

Представим выражение (1) в матричной форме.

Введём обозначения:

Сумма матриц даёт:

Представим матрицы индивидуальных значений общих и характерных фак­торов. Иногда для удобства их представляют в одной матрице:

Модель (1) можно записать в матричной форме: