Запишем матрицу
Для получения нормализованного вектора перехода от исходных признаков к главным компонентам необходимо решить систему уравнений:
Для решения данной задачи воспользуемся функцией eigenvec системы MathCAD, которая возвращает нормированный вектор для соответствующего собственного числа.
В нашем случае первых четырех главных компонент достаточно для достижения заданного уровня информативности, поэтому матрица U (матрица перехода от исходного базиса к базису из собственных векторов)
Строим матрицу U, столбцами которой являются собственные вектора:
U=
Матрица весовых коэффициентов:
А=
Коэффициенты матрицы А являются коэффициентами корреляции между центрировано – нормированными исходными признаками и ненормированными главными компонентами, и
2.2 Экономическая интерпретация полученных главных компонент
Коэффициент
Так как первая главная компонента зависит главным образом от первого (X5 – удельный вес рабочих в составе ППП) и третьего (X7 – коэффициент сменности оборудования) исходного признака, следовательно ее можно обозначить как «Эффективность основного производства». Вторая главная компонента тесно взаимосвязана со вторым (X6 – удельный вес покупных изделий) и четвертым (X9 – удельный вес потерь от брака) исходными признаками, ее можно обозначить как «Удельный вес затрат не приносящих прибыль». Третья главная компонента взаимосвязана с четвертым исходным признаком, поэтому ее обозначим «Удельный вес потерь от брака».
2.3 Матрица наблюденных значений главных компонент.
Мы получили ненормированные главные компоненты. Проведя нормирование полученных центрированных
Обозначим
Модель метода главных компонент:
Эту матрицу будем строить, исходя из соотношения
где
Х- матрица наблюденных значений исходных признаков.
Данная формула хороша тем, что она верна и в том случае, если матрица
А не квадратная (т.е. выделено m<n главных компонент).
«Наблюденные» значения главных компонент приведены в Приложениях.
2.4 Классификация объектов.
Проведем классификацию объектов по первым двум главным компонентам.
Рис.1: Объекты в пространстве главных компонент.
На рис.1 видно, что первая группа характеризуется положительными значениями первой главной компоненты, а вторая группа характеризуется отрицательными значениями первой главной компоненты. При этом значения второй главной компоненты схожи у обеих групп.
2.5 Уравнение регрессии на главные компоненты.
Построим уравнение регрессии на выделенные главные компоненты методом пошаговой регрессии, который предполагает, что на каждом шаге мы будем включать в уравнение регрессии тот признак, который будет вызывать наибольшее приращение коэффициента детерминации.
Процесс будет остановлен, когда величина
В итоге уравнение регрессии примет вид:
Подробный анализ, выполненный с помощью программы “Stadia”, приведен в Приложениях.
3.Метод главных факторов
Мы ставим перед собой задачу снижения размерности признакового пространства. С самого начала будем исходить из того, что мы n признаков попытаемся объяснить с помощью меньшего количества m-латентных признаков - общих факторов, где m<<n, а различия между исходными признаками и введёнными общими факторами, точнее их линейными комбинациями учтём с помощью так называемых характерных факторов.
Конечная цель статистического исследования, проводимого с привлечением аппарата факторного анализа, как правило, состоит в выявлении и интерпретации латентных общих факторов с одновременным стремлением минимизировать как их число, так и степень зависимости
Итак, в нашем распоряжении последовательность многомерных наблюдений Х.
Предполагаем, что каждый признак
Представим выражение (1) в матричной форме.
Введём обозначения:
Сумма матриц даёт:
Представим матрицы индивидуальных значений общих и характерных факторов. Иногда для удобства их представляют в одной матрице:
Модель (1) можно записать в матричной форме: