В случае, если характеристическое уравнение разомкнутой системы A(s) = 0 корней не имеет (т.е. m = 0), то критерий, согласно критерию, замкнутая система является устойчивой, если АФХ разомкнутой системы W¥(jw) не охватывала точку (-1; 0), в противном случае система будет неустойчива (или на границе устойчивости).
3.2. Показатели качества
Если исследуемая АСР устойчива, то может возникнуть вопрос о том, насколько качественно происходит регулирование в этой системе и удовлетворяет ли оно технологическим требованиям. На практике качество регулирования может быть определено визуально по графику переходной кривой, однако, имеются точные методы, дающие конкретные числовые значения.
Показатели качества разбиты на 4 группы:
1) прямые - определяемые непосредственно по кривой переходного процесса,
2) корневые - определяемые по корням характеристического полинома,
3) частотные - по частотным характеристикам,
4) интегральные - получаемые путем интегрирования функций.
3.2.1 Прямые показатели качества.
К ним относятся: степень затухания y, перерегулирование s, статическая ошибка ест, время регулирования tp и др.
Сразу по ней определяется установившееся значение выходной величины ууст.
Степень затухания y определяется по формуле
,где А1 и А3 - соответственно 1-я и 3-я амплитуды переходной кривой.
Перерегулирование s =
, где ymax - максимум переходной кривой.Статическая ошибка ест = х - ууст, где х - входная величина.
Время достижения первого максимума tм определяется по графику.
Время регулирования tp определяется следующим образом: Находится допустимое отклонение D = 5% ууст и строится «трубка» толщиной 2D. Время tp соответствует последней точке пересечения y(t) с данной границей. То есть время, когда колебания регулируемой величины перестают превышать 5 % от установившегося значения.
3.2.2 Корневые показатели качества.
К ним относятся: степень колебательности m, степень устойчивости h и др.
Не требуют построения переходных кривых, поскольку определяются по корням характеристического полинома. Для этого корни полинома откладываются на комплексной плоскости и по ним определяются:
Степень устойчивости h определяется как граница, правее которой корней нет, т.е.
h = min
,где Re(si) - действительная часть корня si.
Степень колебательности m рассчитывается через угол g: m = tg g. Для определения g проводятся два луча, которые ограничивают все корни на комплексной плоскости. g - угол между этими лучами и мнимой осью. Степень колебательности может быть определена также по формуле:
m = min
.3.2.3 Частотные показатели качества.
Для определения частотных показателей качества требуется построение АФХ разомкнутой системы и АЧХ замкнутой системы.
По АФХ определяются запасы: DA - по амплитуде, Dj - по фазе.
Запас DA определяется по точке пересечения АФХ с отрицательной действительной полуосью.Для определения Dj строится окружность единичного радиуса с центром в начале координат. Запас Dj определяется по точке пересечения с этой окружностью.
По АЧХ замкнутой системы определяются показатели колебательности по заданию М и ошибке МЕ как максимумы соответственно АЧХ по заданию и АЧХ по ошибке.
3.2.4 Связи между показателями качества.
Описанные выше показатели качества связаны между собой определенными соотношениями:
; tp = ; ; M = .4. Настройка регуляторов.
4.1. Типы регуляторов.
Для регулирования объектами управления, как правило, используют типовые регуляторы, названия которых соответствуют названиям типовых звеньев:
1) П-регулятор (пропорциональный регулятор)
WП(s) = K1.
Принцип действия заключается в том, что он вырабатывает управляющее воздействие на объект пропорционально величине ошибки (чем больше ошибка е, тем больше управляющее воздействие u).
2) И-регулятор (интегрирующий регулятор)
WИ(s) =
.Управляющее воздействие пропорционально интегралу от ошибки.
3) Д-регулятор (дифференцирующий регулятор)
WД(s) = K2 s.
Генерирует управляющее воздействие только при изменении регулируемой веричины:
u = K2
.На практике данные простейшие регуляторы комбинируются в регуляторы вида:
4) ПИ-регулятор (пропорционально-интегральный регулятор)
WПИ(s) = K1 +
.WПД(s) = K1 + K2 s.