5.М1 + 3.М2 + 2.М3 = 2 - M2 = -4
6.М1 = 12 M3 = 2
Следовательно, дробь можно представить как сумму трех дробей:
Теперь, используя табличные функции, определяется оригинал выходной функции:
y(t) = 2 - 4.e-2t + 2.e-3t. ¨
2.6. Передаточные функции.
2.6.1 Определение передаточной функции.
Преобразование ДУ по Лапласу дает возможность ввести удобное понятие передаточной функции, характеризующей динамические свойства системы.
Например, операторное уравнение
3s2Y(s) + 4sY(s) + Y(s) = 2sX(s) + 4X(s)
можно преобразовать, вынеся X(s) и Y(s) за скобки и поделив друг на друга:
Y(s)*(3s2 + 4s + 1) = X(s)*(2s + 4)
Полученное выражение называется передаточной функцией.
Передаточной функцией называется отношение изображения выходного воздействия Y(s) к изображению входного X(s) при нулевых начальных условиях.
Передаточная функция является дробно-рациональной функцией комплексной переменной:
где B(s) = b0 + b1s + b2 s2 + … + bm sm - полином числителя,
А(s) = a0 + a1s + a2 s2 + … + an sn - полином знаменателя.
Передаточная функция имеет порядок, который определяется порядком полинома знаменателя (n).
Из (2.4) следует, что изображение выходного сигнала можно найти как
Y(s) = W(s)*X(s).
Так как передаточная функция системы полностью определяет ее динамические свойства, то первоначальная задача расчета АСР сводится к определению ее передаточной функции.
2.6.2 Примеры типовых звеньев.
Звеном системы называется ее элемент, обладающий определенными свойствами в динамическом отношении. Звенья систем регулирования могут иметь разную физическую основу (электрические, пневматические, механические и др. звенья), но относится к одной группе. Соотношение входных и выходных сигналов в звеньях одной группы описываются одинаковыми передаточными функциями.
Простейшие типовые звенья:
· усилительное,
· интегрирующее,
· дифференцирующее,
· апериодическое,
· колебательное,
· запаздывающее.
1) Усилительное звено.
Выходной сигнал такого звена в точности повторяет входной сигнал, усиленный в К раз (см. рис. 1.15).
Примерами таких звеньев являются: механические передачи, датчики, безынерционные усилители и др.
2) Интегрирующее.
2.1) Идеальное интегрирующее.
Выходная величина идеального интегрирующего звена пропорциональна интегралу входной величины.
При подаче на вход звена воздействия выходной сигнал постоянно возрастает (см. рис. 1.16).
Это звено астатическое, т.е. не имеет установившегося режима.
2.2) Реальное интегрирующее.
W(s) =
Переходная характеристика в отличие от идеального звена является кривой (см. рис. 1.17).
Примером интегрирующего звена является двигатель постоянного тока с независимым возбуждением, если в качестве входного воздействия принять напряжение питания статора, а выходного - угол поворота ротора.
3) Дифференцирующее.
3.1) Идеальное дифференцирующее.
Выходная величина пропорциональна производной по времени от входной:
При ступенчатом входном сигнале выходной сигнал представляет собой импульс (d-функцию).
3.2) Реальное дифференцирующее.
W(s) =
4) Апериодическое (инерционное).
Этому звену соответствуют ДУ и ПФ вида:
Определим характер изменения выходной величины этого звена при подаче на вход ступенчатого воздействия величины х0.
Изображение ступенчатого воздействия: X(s) =
Y(s) = W(s) X(s) =
Разложим дробь на простые:
Оригинал первой дроби по таблице: L-1{
L-1{
Тогда окончательно получаем:
Постоянная Т называется постоянной времени.
Большинство тепловых объектов являются апериодическими звеньями. Например, при подаче на вход электрической печи напряжения ее температура будет изменяться по аналогичному закону (см. рис. 1.19).
5) Колебательное звено имеет ДУ и ПФ вида
W(s) =
При подаче на вход ступенчатого воздействия амплитудой х0 на переходная кривая будет
иметь один из двух видов: апериодический (при Т1 ³ 2Т2) или колебательный (при Т1 < 2Т2).
6) Запаздывающее.
y(t) = x(t - t), W(s) = e-ts.
Выходная величина у в точности повторяет входную величину х с некоторым запаздыванием t. Примеры: движение груза по конвейеру, движение жидкости по трубопроводу.
2.6.3 Соединения звеньев.
Поскольку исследуемый объект в целях упрощения анализа функционирования разбит нами на звенья, то после определения передаточных функций для каждого звена встает задача объединения их в одну передаточную функцию объекта. Вид передаточной функции объекта зависит от последовательности соединения звеньев:
Wоб = W1.W2.W3…
При последовательном соединении звеньев их передаточные функции перемножаются.
2) Параллельное соединение.
При параллельном соединении звеньев их передаточные функции складываются.
Передаточная функция по заданию (х):
«+» соответствует отрицательной ОС,
«-» - положительной.
Для определения передаточных функций объектов, имеющих более сложные соединения звеньев, используют либо последовательное укрупнение схемы, либо преобразуют по формуле Мезона.