Смекни!
smekni.com

Управление техническими системами лекции (стр. 3 из 17)

,

где

и
- частные производные от F по х и у. Данное уравнение называется уравнением в приращениях, поскольку значения х и у здесь заменены на приращения Dх = х - х0 и Dу = у - у0.

Линеаризация ДУ происходит аналогично, отличие состоит только в том, что необходимо искать частные производные по производным (

,
,
и т.д.).

Пример. Линеаризация нелинейного ДУ.

3xy - 4x2 + 1,5

y = 5
+ y

Данное ДУ является нелинейным из-за наличия произведений переменных х и у. Линеаризируем его в окрестности точки с координатами х0 = 1,

= 0,
= 0. Для определения недостающего начального условия у0 подставим данные значения в ДУ:

0 - 4 + 0 = 0 + у0 откуда у0 = 2.

Введем в рассмотрение функцию

F = 3xy - 4x2 + 1,5x’y - 5y’ - y

и определим все ее производные при заданных начальных условиях:

= (3у - 8х
= 3*2 - 8*1 = -2,

= (3х + 1,5x’ - 1
= 3*1 + 1,5*0 - 1 = 2,

= (1,5у
= 1,5*2 = 3,

= -5.

Теперь, используя полученные коэффициенты, можно записать окончательное линейное ДУ:

-5.Dy’ + 2.Dy + 3.Dх’ - 2.Dх = 0.

¨

2.5. Преобразования Лапласа.

Исследование АСР существенно упрощается при использовании прикладных математических методов операционного исчисления. Например, функционирование некоторой системы описывается ДУ вида

, (2.1)

где х и у - входная и выходная величины. Если в данное уравнение вместо x(t) и y(t) подставить функции X(s) и Y(s) комплексного переменного s такие, что

и
, (2.2)

то исходное ДУ при нулевых начальных условиях равносильно линейному алгебраическому уравнению

a2 s2 Y(s) + a1 s Y(s) + a0 Y(s) = b1 X(s) + b0 X(s).

Такой переход от ДУ к алгебраическому уравнению называется преобразованием Лапласа, формулы (2.2) соответственно формулами преобразования Лапласа, а полученное уравнение - операторным уравнением.

Новые функции X(s) и Y(s) называются изображениями x(t) и y(t) по Лапласу, тогда как x(t) и y(t) являются оригиналами по отношению к X(s) и Y(s).

Переход от одной модели к другой достаточно прост и заключается в замене знаков дифференциалов

на операторы sn, знаков интегралов
на множители
, а самих x(t) и y(t) - изображениями X(s) и Y(s).

Для обратного перехода от операторного уравнения к функциям от времени используется метод обратного преобразования Лапласа. Общая формула обратного преобразования Лапласа:

, (2.3)

где f(t) - оригинал, F(jw) - изображение при s = jw, j - мнимая единица, w - частота.

Эта формула достаточно сложна, поэтому были разработаны специальные таблицы (см. табл. 1.1 и 1.2), в которые сведены наиболее часто встречающиеся функции F(s) и их оригиналы f(t). Они позволяют отказаться от прямого использования формулы (2.3).

Таблица 1.2 - Преобразования Лапласа

Оригинал x(t)

Изображение X(s)

d-функция

1

1

t

t2

tn

e-at

a.x(t)

a.X(s)

x(t - a)

X(s).e-as

sn.X(s)

Таблица 1.2 - Формулы обратного преобразования Лапласа (дополнение)

Изображение X(s)

Оригинал x(t)

a Î R, M Î R (a и М - действительные числа)

M.e-at

a = a1 + j. a2 M = M1 + j.M2 (a и М - комплекные)

2.e-a1t.[M1.cos(a2.t) - M2.sin(a2.t)]

Закон изменения выходного сигнала обычно является функцией, которую необходимо найти, а входной сигнал, как правило, известен. Некоторые типовые входные сигналы были рассмотрены в п. 2.3. Здесь приводятся их изображения:

единичное ступенчатое воздействие имеет изображение X(s) =

,

дельта-функция X(s) = 1,

линейное воздействие X(s) =

.

Пример. Решение ДУ с использованием преобразований Лапласа.

Допустим, входной сигнал имеет форму единичного ступенчатого воздействия, т.е. x(t) = 1. Тогда изображение входного сигнала X(s) =

.

Производим преобразование исходного ДУ по Лапласу и подставляем X(s):

s2Y + 5sY + 6Y = 2sX + 12X,

s2Y + 5sY + 6Y = 2s

+ 12
,

Y(s3 + 5s2 + 6s) = 2s + 12.

Определяется выражение для Y:

.

Оригинал полученной функции отсутствует в таблице оригиналов и изображений. Для решения задачи его поиска дробь разбивается на сумму простых дробей с учетом того, что знаменатель может быть представлен в виде s(s + 2)(s + 3):

=
=
+
+
=

=

.

Сравнивая получившуюся дробь с исходной, можно составить систему из трех уравнений с тремя неизвестными:

М1 + М2 + М3 = 0 M1 = 2