Смекни!
smekni.com

Расчет надежности электроснабжения подстанции Южная (стр. 4 из 6)

pi= mi/m.

Определим среднее значение для каждого интервала

Вычислим значение дисперсии D по формуле:

Определим среднеквадратичное отклонение:

.

Вычислим коэффициент вариации по формуле:

.

По номограмме находим значение параметра формы 1/a=0,36. По найденным значениям вычислим параметр масштаба С распределения Вейбула-Гниденко :

Г(1,36)=0,8902

Среднее время безотказной работы для распределения Вейбула-Гниденко определим по формуле

;

l2ЛЭП=1/Т2ЛЭП

В таблице 13 представлен статистический ряд восстановления отказов ЛЭП.

Интенсивность восстановления определим по формуле (1.16)

Вероятность восстановления ЛЭП определяется по формуле

Рвос.ЛЭП=1-е-m.

Таблица 13

Статистический ряд восстановления внезапных и постепенных отказов ЛЭП

восстановление

7,1

9,2

11,3

13,4

8,9

10,9

13

8,6

10,7

12,7

8,1

10,3

12,3

4,8

9,9

12,1

4,5

9,6

11,7

18,8

Т=

10,395

m=

0,0962

Результаты расчетов по приведенным выше формулам сведены в табл.11,12,13.

1.4. Модель отказов и восстановления для разъединителей

Представим разъединитель как элемент состоящий из одного элемента с внезапным отказом, с показательным законом распределения наработки на отказ (1,1). Статистический ряд представлен в таблице 14, 15 наработок на отказ и времени восстановления.

Параметр показательного закона l находим по формуле:

где хср— среднеее значение наработок на отказ.

Среднее время безотказной работы определим по формуле

Таблица 14

Статистический ряд внезапных отказов разъединителей

X, г

X, г

X, г

X, г

6,64

7,40

6,68

7,13

7,06

7,17

7,44

7,06

6,86

7,12

7,20

7,22

7,20

6,98

6,83

7,11

6,79

6,83

7,24

7,48

Т=7

l=0,14143

Интенсивность восстановления определим по формуле (1.16)

Вероятность восстановления разъединителей определяется:

Рвос.раз=1-е-m.

Таблица 15

Статистический ряд времени восстановления разъединителей

восстановление

8,3

6

6,2

7

7,5

8

8,3

7,2

9,1

9,2

10,9

9

6,8

10,4

9,4

8,1

10,1

7,1

8,5

6,1

Т=8,16

m=0,12255

Результаты расчетов по приведенным выше формулам сведены в табл.14,15.

1.6. Модель отказов и восстановления для отделителей и короткозамыкателей

Для отделителей и короткозамыкателей составим модель аналогичную разъединителям и проведем подобный расчет. Исходные данные и результаты расчета сведем в таблицу 16,17,18,19.

Таблица 16

Статистический ряд внезапных отказов отделителей

X, ч

X, ч

X, ч

X, ч

31377

35695

31623

34179

33786

34416

35974

33762

32653

34130

34558

34679

34579

33325

32455

34091

32231

32471

34825

36149

Т=33848

l=3E-05

Таблица 17

Статистический ряд времени восстановления отделителей

восстановление

8,1

5,9

6,1

6,9

7,4

7,8

8,1

7,1

8,9

9,0

10,6

8,8

6,7

10,2

9,2

7,9

9,9

7,0

8,3

6,0

Т=7,98933

m=0,12517

Таблица 18

Статистический ряд внезапных отказов короткозамыкателей

X, ч

X, ч

X, ч

X, ч

32430

36893

32685

35326

34920

35570

37181

34895

33749

35275

35718

35842

35739

34443

33544

35235

33312

33560

35993

37362

Т=

34984

l=

2,9E-05

Таблица 19

Статистический ряд времени восстановления короткозамыкателей

восстановление

8,3

6

6,2

7

7,5

8

8,3

7,2

9,1

9,2

10,9

9

6,8

10,4

9,4

8,1

10,1

7,1

8,5

6,1

Т=8,16

m=0,12255

1.6. Модель отказов и восстановления для шин

Рассматриваем два типа шин: питающие шины, идущие от трансформатора к вводному выключателю; секции шины. Так как шины голые то для них применим показательный закон распределения внезапных отказов. Причиной внезапных отказов является воздействие токов короткого замыкания. Расчет произведем аналогично результаты расчетев сведем в таблицу 20,21,22,23