где –p – общее значение скалярных произведений. Величину p называют давлением. Его особенность заключается в независимости от направления рассматриваемого взаимодействия частиц. При p > 0 среда, как показывает опыт, находится в сжатом состоянии, поэтому и использован знак минус. Таким образом, матрица компонент тензора внутренних напряжений в идеальной жидкости (газе) имеет вид:
, (2.6)
и тензор P целиком определяется скаляром p.
Понятно, что идеальная жидкость не единственно возможная модель сплошной среды, позволяющая определить компоненты тензора внутренних напряжений. Можно, например, рассматривать его компоненты как функции от деформации частицы: в этом случае среда называется упругой. В частном случае линейности это соотношение приобретает вид закона Гука. Изучением таких сред занимается теория упругости.
Особое место в механике сплошной среды занимает модель вязкой жидкости, предполагающая связь тензора внутренних напряжений с частными производными скорости по координатам. Имеется в виду эффект "трения" слоев вязкой жидкости между собой при наличии разности их поступательных скоростей. В частном случае линейности связь представляется в виде закона Навье-Стокса (или обобщенного закона вязкости Ньютона):
, (2.7)где
– элементы единичной матрицы (с единицами на главной диагонали и нулями на всех остальных местах), матрица размерности 3´3, обозначенная emn, называется тензором скоростей деформации, а тензорный коэффициент линейности Bijmn описывает свойства вязкой жидкости.Если свойства среды в разных направлениях одинаковы, то она называется изотропной, в противном случае – анизотропной. В изотропной среде Bijmn представляется симметричной матрицей размерности 3´3´3´3, одинаковой в любой системе координат. Можно показать [1], что в этом случае все компоненты тензора Bijmn выражаются всего лишь через два независимых параметра l и m, называемых коэффициентами Ламе, поэтому закон Навье-Стокса для вязкой изотропной жидкости имеет вид:
. (2.8)
В теории вязкой жидкости m называется коэффициентом внутреннего трения или динамическим коэффициентом вязкости,
– кинематическим коэффициентом вязкости (коэффициентом линейной вязкости), – вторым коэффициентом вязкости (коэффициентом объемной вязкости). Размерность m, l и z в СИ: .Нетрудно видеть, что упомянутые модели для идеальной и вязкой жидкости вводят еще одну неизвестную – давление p. Т.е. для замыкания системы уравнений движения сплошной среды оказывается необходимым еще одно скалярное соотношение. В этом качестве чаще всего применяются уравнения, представляющие различные гипотезы связи плотности и давления:
.Если такое соотношение можно ввести, то жидкость называется баротропной. Выделяются следующие частные случаи.
1.
– случай несжимаемой жидкости, или .2.
, где C – постоянная, – случай изотермического процесса.3.
, где C и n – постоянные, – случай политропического процесса, n называется показателем политропы.4.
– уравнение Клапейрона-Менделеева для совершенного газа, где – универсальная газовая постоянная, – масса вещества в кг, численно равная молекулярному весу, T – абсолютная температура, которую необходимо задавать еще одним дополнительным соотношением.