В то же время вера Кеплера в астрологию подтверждается многими фактами, и среди них следующим: в январе 1598 г. у него родился сын Генрих, а у Местлина — сын Август. Составляя им гороскопы, Кеплер пришел к выводу, что обоих ждет скорая смерть. Не искажая этот страшный прогноз, он сообщает его Местлину. Дети и в самом деле вскоре умерли, но не в предсказанное время.
Летом 1595 г. Кеплер, как ему показалось, подошел к большому открытию: он решил, что им обнаружены важнейшие закономерности в строении мира, установлена первопричина взаимного расположения планет Солнечной системы. Еще в студенческие годы, познакомившись через Местлина с учением Коперника, Кеплер стал убежденным его приверженцем. При этом, однако, новое астрономическое учение укладывалось у него в рамки религиозного сознания, откуда и черпались им источники новых построений. Стремясь глубоко проникнуть в тайны строения Вселенной, он хочет достичь этого познанием божественных планов творения мира. Будучи уверенным в существовании мудрого промысла божьего, он думает, что при сотворении мира бог должен был исходить из простых числовых свойств и соотношений, использовать совершенные геометрические формы. Этот пифагорейско-платоновский подход к изучению вопросов мироздания лег в основу его первого большого астрономического исследования, интенсивную работу над которым он развернул примерно через год после приезда в Грац.
В числе первых вопросов, возникших перед Кеплером, был следующий: почему существует только шесть планет, а не двадцать, или, скажем, сто? Этот вопрос предстояло решить вместе с объяснением относительной величины расстояний между траекториями движения планет. Попыткой ответить на вопросы такого рода начались многолетние исследования, которые в конце концов привели к открытию законов движения планет. Сначала он предположил, что между параметрами планетных орбит должны быть простые соотношения, выражающиеся целыми числами. «Я затратил много времени на эту задачу, на эту игру с числами, но не смог найти никакого порядка ни в численных соотношениях, ни в отклонениях от них» — пишет он в предисловии к «Космографической тайне». Затем он попытался решить эту задачу, предположив существование дополнительных, еще не открытых по причине малых размеров, планет: одну из них он поместил между Меркурием и Венерой, а другую — между Марсом и Юпитером, рассчитывая, что теперь удастся обнаружить желанные соотношения, но и этот прием не привел его к ожидаемым результатам.
Рис. 1 |
«Я потратил почти все лето на эту тяжелую работу, и в конце концов совершенно случайно подошел к истине». 9 июля 1595 г. — Кеплер скрупулезно зафиксировал эту дату, — решая с учениками какую-то геометрическую задачу, он начертил на классной доске равносторонний треугольник со вписанной в него и описанной около него окружностями (см. Рис.1). Внезапно его озарила мысль, которая явилась, по его мнению, ключом к разгадке тайны Вселенной. Прикинув отношение между радиусами окружностей, он заметил, что оно близко к отношению радиусов круговых орбит Сатурна и Юпитера, как они были вычислены Коперником (здесь отношение R : r = 2 : 1, а отношение RС : RЮ = 8.2 : 5.2, по Копернику). В дальнейшем ход рассуждений был таким: Сатурн и Юпитер — «первые» планеты (считая по направлению к Солнцу) и «треугольник — первая фигура в геометрии. Немедленно я попытался вписать в следующий интервал между Юпитером и Марсом квадрат, между Марсом и Землей — пятиугольник, между Землей и Венерой —шестиугольник...». Во времена Кеплера было известно только шесть планет Солнечной системы, наблюдаемых невооруженным взглядом: Меркурий, Венера, Земля, Марс, Юпитер и Сатурн. Планета Уран была открыта В. Гершелем много позже — в 1781 г., Нептун открыт астрономом Галле и математиком Леверье в 1846 г., Плутон был обнаружен только в 1930 г.
Но дело не ладилось, хотя, казалось, цель была совсем близкой. «И вот я снова устремился вперед. Зачем рассматривать фигуры двух измерений для пригонки орбит в пространстве? Следует рассмотреть формы трех измерений, и вот, дорогой читатель, теперь мое открытие в Ваших руках!». Можно построить любое число правильных многоугольников на плоскости, но можно построить лишь ограниченное число правильных многогранников в пространстве трех измерений. Такими правильными многогранниками, все грани которых являются правильными и равными между собой многоугольниками и все двугранные углы которых равны между собой, являются: тетраэдр (4 треугольные грани), куб (6 граней-квадратов), октаэдр (8 треугольных граней), додекаэдр (12 пятиугольных граней) и икосаэдр (20 треугольных граней).
Важным свойством правильных многогранников является существование для каждого из них вписанного и описанного шаров (сфер) таких, что поверхность вписанного шара касается центра каждой грани правильного многогранника, а поверхность описанного шара проходит через все его вершины. Центры этих шаров совпадают между собой и с центром соответствующего многогранника. Еще древним грекам было известно, что число видов правильных многогранников ограничивается пятью. Но ведь и промежутков между планетами, подумал Кеплер, тоже пять. Как трудно было допустить, что это простая случайность (к тому же умозаключение опиралось на неверное представление о числе планет) и как заманчиво было видеть в этом совпадении мудрость творца. Ответ на вопрос, почему планет шесть, не меньше и не больше, казалось найден. Одновременно назревает и решение вопроса об относительных расстояниях между орбитами планет: в сферу, на которой расположена орбита Сатурна, вписан куб, в него вписана следующая сфера — с орбитой Юпитера, далее последовательно вписаны тетраэдр, сфера Марса, додекаэдр, сфера Земли, икосаэдр, сфера Венеры, октаэдр, сфера Меркурия, в центре всей системы у коперниканца Кеплера, разумеется, Солнце, и — тайна Вселенной раскрыта, раскрыта молодым учителем протестантской школы в Граце и математиком провинции Штирии.
Рис. 2 Правильные многогранники (из книги Кеплера «Космографическая тайна») |
Математический аппарат, применяемый в этом случае, достаточно элементарен, дело сводится к вычислениям зависимостей между радиусами сфер, описанных вокруг соответственных правильных многогранников и вписанных в них. Пусть, например, радиус орбиты Земли, а значит и соответствующей сферы, равен 1. Эта сфера описана вокруг икосаэдра, в который вписана сфера Венеры. Решая геометрическую задачу на определение радиуса сферы, вписанной в икосаэдр, и сравнивая полученную величину с радиусом описанной вокруг икосаэдра сферы Кеплер получил соотношение 0,762 : 1. Относительные расстояния до Солнца для шести планет Солнечной системы, полученные Коперником и Кеплером, и современные усредненные значения приводятся в таблице:
Меркурий | Венера | Земля | Марс | Юпитер | Сатурн | |
По Копернику | 0,379 | 0,719 | 1,000 | 1,520 | 5,219 | 9,174 |
По Кеплеру | 0,419 | 0,762 | 1,000 | 1,440 | 5,261 | 9,163 |
Современные усредненные значения | 0,387 | 0,723 | 1,000 | 1,524 | 5,203 | 9,539 |
Видим, что данные Кеплера весьма значительно отличаются от вычисленных еще Коперником, и притом во всех случаях — в сторону ухудшения. Объясняя эти расхождения, Кеплер предположил, что каждая из планетных сфер, не будучи материальной, тем не менее имеет некоторую толщину.
Закончив рукопись, Кеплер озаглавил ее так: «Prodromos dissertationem cosmographicum continens Mysterium cosmographicum» — «Предвестник космографических исследований, содержащий космографическую тайну».
Главный поиск. «Новая астрономия»
Над «Новой астрономией» Кеплер работал с небольшими перерывами с 1600 по 1606 г. Значение этой книги состоит прежде всего в том, что в ней дан вывод двух из трех знаменитых законов движения планет, названных его именем. В современной формулировке эти законы обычно звучат так:
I. Все планеты движутся по эллипсам, в одном из фокусов которых (общем для всех планет) находится Солнце.