Смекни!
smekni.com

Иоганн Кеплер (стр. 2 из 6)

В то же время вера Кеплера в астрологию подтвер­ждается многими фактами, и среди них следующим: в январе 1598 г. у него родился сын Генрих, а у Местлина — сын Август. Составляя им гороскопы, Кеплер при­шел к выводу, что обоих ждет скорая смерть. Не искажая этот страшный прогноз, он сообщает его Местлину. Дети и в самом деле вскоре умерли, но не в предсказанное время.

Летом 1595 г. Кеплер, как ему показалось, подошел к большому открытию: он решил, что им обнаружены важ­нейшие закономерности в строении мира, установлена пер­вопричина взаимного расположения планет Солнечной си­стемы. Еще в студенческие годы, позна­комившись через Местлина с учением Коперника, Кеп­лер стал убежденным его приверженцем. При этом, одна­ко, новое астрономическое учение укладывалось у него в рамки религиозного сознания, откуда и черпались им ис­точники новых построений. Стремясь глубоко проникнуть в тайны строения Вселенной, он хочет достичь этого по­знанием божественных планов творения мира. Будучи уве­ренным в существовании мудрого промысла божьего, он думает, что при сотворении мира бог должен был исходить из простых числовых свойств и соотношений, использо­вать совершенные геометрические формы. Этот пифагорейско-платоновский подход к изучению вопросов миро­здания лег в основу его первого большого астрономического исследования, интенсивную работу над которым он развернул примерно через год после приезда в Грац.­

В числе первых вопросов, возникших перед Кеплером, был следующий: почему существует только шесть планет, а не двадцать, или, скажем, сто? Этот вопрос предстояло решить вместе с объяснением относительной величины рас­стояний между траекториями движения планет. Попыт­кой ответить на вопросы такого рода начались многолет­ние исследования, которые в конце концов привели к от­крытию законов движения планет. Сначала он предположил, что между параметрами пла­нетных орбит должны быть простые соотношения, выра­жающиеся целыми числами. «Я затратил много времени на эту задачу, на эту игру с числами, но не смог найти никакого порядка ни в численных соотношениях, ни в от­клонениях от них» — пишет он в предисловии к «Космо­графической тайне». Затем он попытался решить эту задачу, предположив существование дополнительных, еще не открытых по при­чине малых размеров, планет: одну из них он поместил между Меркурием и Венерой, а другую — между Марсом и Юпитером, рассчитывая, что теперь удастся обнаружить желанные соотношения, но и этот прием не привел его к ожидаемым результатам.

Рис. 1

«Я потратил почти все лето на эту тяжелую работу, и в конце концов совершенно случайно подошел к истине». 9 июля 1595 г. — Кеплер скрупулезно зафиксировал эту дату, — решая с учениками какую-то геометрическую за­дачу, он начертил на классной доске равносторонний тре­угольник со вписанной в него и описанной около него ок­ружностями (см. Рис.1). Внезапно его озарила мысль, которая явилась, по его мнению, ключом к разгадке тайны Вселенной. Прикинув отношение между радиусами ок­ружностей, он заметил, что оно близко к отношению радиу­сов круговых орбит Сатурна и Юпитера, как они были вы­числены Коперником (здесь отношение R : r = 2 : 1, а от­ношение RС : RЮ = 8.2 : 5.2, по Копернику). В дальнейшем ход рассуждений был таким: Сатурн и Юпитер — «пер­вые» планеты (считая по направлению к Солнцу) и «тре­угольник — первая фигура в геометрии. Немедленно я попытался вписать в следующий интервал между Юпите­ром и Марсом квадрат, между Марсом и Землей — пяти­угольник, между Землей и Венерой —шестиугольник...». Во времена Кеплера было известно только шесть планет Солнечной системы, наблюдаемых невооруженным взглядом: Меркурий, Венера, Земля, Марс, Юпитер и Сатурн. Планета Уран была открыта В. Гершелем много позже — в 1781 г., Нептун открыт астрономом Галле и математиком Леверье в 1846 г., Плутон был обнаружен только в 1930 г.

Но дело не ладилось, хотя, казалось, цель была совсем близкой. «И вот я снова устремился вперед. Зачем рассмат­ривать фигуры двух измерений для пригонки орбит в пространстве? Следует рассмотреть формы трех измерений, и вот, дорогой читатель, теперь мое открытие в Ваших руках!». Можно построить любое число правиль­ных многоугольников на плоскости, но можно построить лишь ограниченное число правильных многогранников в пространстве трех измерений. Такими правильными мно­гогранниками, все грани которых являются правильными и равными между собой многоугольниками и все двугран­ные углы которых равны между собой, являются: те­траэдр (4 треугольные грани), куб (6 граней-квадратов), октаэдр (8 треугольных граней), додекаэдр (12 пятиугольных граней) и икосаэдр (20 треугольных граней).

Важным свойством правильных многогранников явля­ется существование для каждого из них вписанного и описанного шаров (сфер) таких, что поверхность вписан­ного шара касается центра каждой грани правильного многогранника, а поверхность описанного шара проходит через все его вершины. Центры этих шаров совпадают между собой и с центром соответствующего многогран­ника. Еще древним грекам было известно, что число видов правильных многогранников ограничивается пятью. Но ведь и промежутков между планетами, подумал Кеплер, тоже пять. Как трудно было допустить, что это простая случайность (к тому же умозаключение опиралось на не­верное представление о числе планет) и как заманчиво было видеть в этом совпадении мудрость творца. Ответ на вопрос, почему планет шесть, не меньше и не больше, казалось найден. Одновременно назревает и решение во­проса об относительных расстояниях между орбитами пла­нет: в сферу, на которой расположена орбита Сатурна, вписан куб, в него вписана следующая сфера — с орбитой Юпитера, далее последовательно вписаны тетраэдр, сфе­ра Марса, додекаэдр, сфера Земли, икосаэдр, сфера Вене­ры, октаэдр, сфера Меркурия, в центре всей системы у коперниканца Кеплера, разумеется, Солнце, и — тайна Вселенной раскрыта, раскрыта молодым учи­телем протестантской школы в Граце и математиком про­винции Штирии.

Рис. 2 Правильные многогранники (из книги Кеплера «Космографическая тайна»)


Математический аппарат, применяемый в этом случае, достаточно элементарен, дело сводится к вы­числениям зависимостей между радиусами сфер, описан­ных вокруг соответственных правильных многогран­ников и вписанных в них. Пусть, например, радиус орбиты Земли, а значит и соответст­вующей сферы, равен 1. Эта сфера опи­сана вокруг икосаэдра, в который вписана сфера Венеры. Решая геометрическую задачу на опреде­ление радиуса сферы, вписанной в икосаэдр, и сравнивая полученную величину с радиусом описанной вокруг ико­саэдра сферы Кеплер получил соотношение 0,762 : 1. Относительные расстояния до Солнца для шести пла­нет Солнечной системы, полученные Коперником и Кепле­ром, и современные усредненные значения приводятся в таблице:

Меркурий

Венера

Земля

Марс

Юпитер

Сатурн

По Копернику

0,379

0,719

1,000

1,520

5,219

9,174

По Кеплеру

0,419

0,762

1,000

1,440

5,261

9,163

Современные усред­ненные значения

0,387

0,723

1,000

1,524

5,203

9,539

Видим, что данные Кеплера весьма значительно отличаются от вычисленных еще Коперником, и притом во всех случаях — в сторону ухудшения. Объясняя эти расхождения, Кеплер предположил, что каждая из планетных сфер, не будучи материальной, тем не менее имеет некоторую толщину.

Закончив рукопись, Кеплер озаглавил ее так: «Prodromos dissertationem cosmographicum continens Mysterium cosmographicum» — «Предвестник космографических исследований, содержащий космографическую тайну».

Главный поиск. «Новая астрономия»

Над «Новой астрономией» Кеплер работал с небольши­ми перерывами с 1600 по 1606 г. Значение этой книги состоит прежде всего в том, что в ней дан вывод двух из трех знаменитых законов движения планет, названных его именем. В современной формулировке эти законы обыч­но звучат так:

I. Все планеты движутся по эллипсам, в одном из фокусов которых (общем для всех планет) находит­ся Солнце.