Смекни!
smekni.com

Миграция химических загрязняющих веществ в биогеоценозе (стр. 1 из 7)

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ И НАУКЕ

ЮГОРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ДОКЛАД

по дисциплине: «Техногенные системы и экологический риск»

на тему: «МИГРАЦИЯ ХИМИЧЕСКИХ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В БИОГЕОЦЕНОЗЕ»

Выполнила: студентка гр. 2152

Попович А.В.

Г. Ханты-Мансийск, 2009 г.

Содержание:

Миграция химических загрязняющих веществ в биогеоценозе……………..3

1. Миграция химических загрязняющих веществ в природных, грунтовых и лизиметрических водах, в почвенных растворах………………………………………5

2. Миграция химических элементов в почвенном профиле…………………..….10

Список используемой литературы………………………………………………..13

МИГРАЦИЯ ХИМИЧЕСКИХ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В БИОГЕОЦЕНОЗЕ

Миграция химических загрязняющих веществ (ХЗВ) в биогеоцено­зе как наиболее геохимически активном блоке геосистемы тесно связана с их поведением в сопряженных с почвой природных водах.

Отдельной задачей является исследование миграции ХЗВ в геоси­стемах, испытывающих активное техногенное воздействие, поскольку, например, включение металлов в металлорганические соединения может иметь иные физиологические последствия для биоты, нежели присутствие элементов в обычных для геосистем формах. Техногенно аномальные геосистемы можно рассматривать как полигоны, в преде­лах которых особенности миграции техногенных продуктов проявля­ются наиболее ярко. Это имеет большое значение для разработки методики наблюдений в системе геохимического мониторинга, выяв­ления наиболее чувствительных звеньев миграционной цепи, сигнали­зирующих о переходе геосистемы из фонового состояния в аномальное.

В процессах миграции химических загрязняющих веществ особое место занимает комплексообразование. Многие органические вещест­ва, связывая ионы металлов в комплексы, способствуют их стабилиза­ции и переносу в растворенном состоянии. Путем прямых наблюдений с мечеными соединениями установлено, что миграционная способ­ность железа в форме, связанной с различными органическими ком­понентами почвенных растворов, на 1—2 порядка и более превосходит миграционную способность ионных форм железа.

Образование металлорганических комплексов иногда имеет поло­жительное биологическое значение, инактивируя избыточные количе­ства активных ионов тяжелых металлов или благоприятствуя растворению труднодоступных, но биологически важных элементов.

На растворимость соединений тяжелых металлов большое влияние оказывает концентрация их в растворе. При очень низкой концентра­ции микроэлементы не выпадают в осадок при соответствующем изменении реакции среды и при добавлении осадителей. Этот фактор играет важную роль в случае металлов, образующих труднорастворимые соединения при величинах рН и ЕА, характерных для природных вод. Миграционная способность микроэлементов в форме комплексных соединений не безгранична: она лимитируется устойчивостью самого соединения, возможностью конкуренции со стороны другого элемента, дающего более стойкий комплекс, выпадением в осадок самой комп­лексной соли.

Растворимые комплексы с органическими соединениями образует большинство металлов. К ним, прежде всего, необходимо отнести комплексы, образуемые гуминовыми веществами и другими органиче­скими кислотами с двух- и трехвалентными металлами. Роль гуминовых веществ в переносе металлов в растворенном состоянии велика. От 50 до 75 % марганца, никеля, кобальта переносят в составе органических соединений речные воды.

В настоящее время установлено (Г.М. Варшал и др., 1983, 1985):

- что низкомолекулярные соединения неспецифической природы играют небольшую роль в переносе ХЗВ, хотя их набор довольно широк — щавелевая, фумаровая, лимонная и другие кислоты, танины, сахара, аминокислоты и пр.;

- органические соединения типа фульвокислот образуют комплексы с поливалентными катионами;

- более высокомолекулярные фракции способны связывать больше поливалентных катионов.

В работах B.C. Аржановой и П.В. Елпатьевского (1981, 1985) показана важная роль гумусового горизонта как физико-химического барьера для поллютантов, а также как арены изменения форм мигра­ции. Специфику геохимических процессов в гумусовом горизонте почв обусловливают процессы превращения органических соединений, поэтому можно ожидать значительной роли последних в закреплении или, наоборот, в дальнейшей миграции ХЗВ.

В почвенных растворах и вытяжках обнаружены аминокислоты и кислоты жирного ряда, оксикислоты, полифенолы, фульвокислоты, т. е. весь набор органических соединений, свойственный многим типам природных вод. Все эти вещества содержат функциональные группы, которые участвуют в координационных связях и образовании комп­лексных и внутрикомплексных соединений. Таким образом, ведущая роль водорастворимых органических веществ в миграции ХЗВ выяв­лена многими исследователями.

Взаимодействие гумусовых веществ с ионами металлов и другими ХЗВ включает физические (адсорбция, пептизация, коагуляция) и химические (ионный обмен, солеобразование, образование комплек­сных соединений) процессы. Адсорбция катионов на гуминовых кис­лотах может быть в некоторых случаях описана уравнением Ленгмюра. Устойчивость образующихся комплексов зависит от ряда факторов и в первую очередь от рН и ионной силы.

Эти же условия определяют связывание тяжелых металлов почвой в целом и ее компонентами. Увеличение рН от 4 до 5,5 ведет к возрастанию сорбции цинка на гидрооксидах железа и алюминия. При рН 7,5 растворимость цинка увеличивается из-за образования комп­лексов с органическим веществом. Таким образом, с изменением рН меняется роль почвенных компонентов в сорбции тяжелых металлов. Медь (II) образует комплексы в более широком интервале рН. Добав­ление меди к почвенному раствору, содержащему цинк, ведет при рН 5 к снижению сорбции последнего, что является примером взаим­ного влияния ионов тяжелых металлов (Д.С. Орлов, 1985).

Кислые почвы поглощают тяжелые металлы из растворов в меньшей степени, чем нейтральные или содержащие карбонаты. В то же время в таких почвах значительное количество меди связывается в комплекс­ные соединения. Кислые почвы имеют меньшее число активных центров, занятых протонами, и ионами алюминия, что снижает воз­можность адсорбции Си2+ и Са+2. Карбонатные, богатые кальцием почвы могут в большей степени сорбировать тяжелые металлы. Ион кадмия при этом образует малоустойчивые комплексы. В результате Са2+ более подвижен в почвенном профиле по сравнению с Си2+.

Высокое содержание металлов, приходящееся на единицу органи­ческого вещества, в ряде случаев можно объяснить образованием многоядерных комплексов или наличием адсорбированных комплек­сов, в которых имеется неэквивалентное взаимодействие между орга­ническими лигандами и ионами металлов.

При высоком содержании гумуса интенсивно образуются органо-металлические комплексы в коллоидной и растворимой формах, что обусловливает высокую степень их подвижности. При интенсивно промывном режиме и низких значениях рН соединения тяжелых металлов растворяются и переходят в ионную форму. На территориях, где преобладают почвы с высокой степенью засоления, можно ожидать образования труднорастворимых соединений, содержащих тяжелые металлы. При рН 6 кадмий присутствует в двухвалентной форме и полностью растворяется в водной фазе при условии, что она не содержит таких связывающих анионов, как фосфат или сульфид.

Образование Cd(OH)2 начинается при рН 9, достигая максимума при рН 11. Образование РЬ(ОН)2О начинается при рН > 9. При рН 6—10 преобладает РЬ(ОН)+. При рН 8,5 и концентрации хлорид-иона более 100,4 моль/л преобладают комплексы CdCl3, CdCl4, РЬС142-. В морской воде, содержащей 10"0'25 моль/л иона СГ при рН 8,1—8,2 форма РЬОН преобладает над его хлоридными комплексами, а кадмий при­сутствует в виде CdCl2 и CdCl3. Такая закономерность, установленная на модельных системах, несомненно, может быть справедлива и в природных условиях. В почвенном растворе обнаружено незначитель­ное (< 10 мкг/л) содержание комплексов Cd2+ с органическими ком­понентами, а также хлоридными и сульфатными лигандами (CdCl2, CdCl3, CdCl4, CdSO4). Все эти комплексы либо заряжены отрицательно, либо нейтральны, причем ион Cd2+ обнаруживается весьма редко. Отмечена возможность присутствия меди в гуминовых кислотах и фульвокислотах в форме комплекса медь-порфиринового типа.

Рис. 1. Формы миграции тяжелых металлов в природных и почвенных водах


Гуминовые вещества активно реагируют с катионами, оксидами и гидро-ксидами металлов, образуя химически разнообразные и биологически устойчивые соединения.

Формы миграции тяжелых металлов в природных водах и, в част­ности, в почвенных, многообразны, их основные виды представлены на рис. 1. Взвешенные и коллоидные формы соединений входят в состав почвенных гранулометрических фракций, а истинно растворен­ные извлекаются в составе водных вытяжек из почв.

Таким образом, для вещественного состава водных вытяжек харак­терно следующее:

1) водные вытяжки содержат большой набор органических соеди­нений различного состава;

2) вещества, содержащиеся в водных вытяжках, способны образо­вывать комплексы с тяжелыми металлами; эти комплексы могут иметь
в природных условиях различный знак заряда;

3) на комплексообразование оказывает сильное влияние рН, конкурентное комплексообразование, ионная сила раствора, состав лигандов, наличие и состав неорганических анионов.