Смекни!
smekni.com

Теория образования окисей азота в котельных установках средней мощности (стр. 2 из 2)

Параллельно описанной выше одной из теорий, проходили и другие изучения на основании которой были сделаны следующие выводы :

1) Азотосодержащие соединения топлива при горении частично окисляются до NO , и влияние этого процесса на общее содержание оксида азота в продуктах сгорания должно быть учтено.

2) Влияние топливных NOx на общий выброс оксида азота более существенно при низких температурах процесса горения (Tmax<1800 K), например, при сжигании низкокачественных углей, особенно при сжигании топлива в кипящем слое, при горении мазута, антрацитов и других высокореакционных топлив в крупных топливосжигающих установках влияние топливных NOx меньше.

3) Образование топливных оксидов азота происходит на начальном участке факела, в области образования «быстрых» NO и до образование «термических» NO.

4) Степень перехода азотосодержащих соединений топлива в NO уменьшается с увеличением концентрации азота в топливе. Однако абсолютный выход NO при большем содержании азота топлива будет выше.

5) Степень перехода азотосодержащих соединений топлива в NO быстро нарастает с увеличением коэффициента избытка.

6) Выход топливных NO сравнительно слабо (особенно по сравнению с термическим NO) зависит от температуры процесса.

7) Вид азотосодержащего соединения и содержание кислорода в топливе не оказывают влияния на выход топливных NO.

Из способов снижения образования «топливных» NOx наиболее подробно испытаны методы ступенчатого сжигания топлива.

Выводы .

Выше было показано, что оксид азота может образоваться по трём известным механизмам :

· «термическому», в результате диссоциации молекул на атомы и радикалы и последующего окисления молекул азота, он исходит из значительной зависимости выхода NO от температуры, что качественно подтверждается исследованиями на крупных промышленных установках ;

· «быстрому», действующему в начале зоны горению, в основу которого положены реакции с участием радикалов СН, СН2, он определяет минимальный выход NO при горении газового топлива, слабо зависит от температуры и сильно от структуры молекулы топлива ;

· «топливному», зависящему от содержания азота в топливе и избытка воздуха.

Образование диоксида азота в процессах горения.

В течении ряда лет существовало мнение, что оксиды азота образуются в процессах горения в виде монооксида азота и лишь после выхода из дымовой трубы доокисляются в диоксид. Однако при сжигании богатых смесей и при сжигании газовоздушных смесей, по составу близких к стехиометрическим , было зафиксировано в предпламенной зоне до 14 мг/м^3 диоксида азота. Во фронте пламени существенных количеств NO2 обнаружить не удалось, что можно объяснить разложением NO2 в ходе реакции :

Так же не исключены и другие реакции разложения NO2.

Образование NO начинается на расстоянии 1 мм от видимого фронта пламени и достигает максимума во фронте пламени. Отношение NO2/NO уменьшается с повышением температуры. Разложение NO2происходит за период = 4*10^-3 с на отрезке длинной 1 мм от начальной границы видимого фронта пламени. Зона разложения предпламенной NO2во фронте пламени совпадает с зоной образования «быстрых» NO, т.е зоной интенсивного нарастания концентраций оксида азота. Эффект разложения NO2в факеле известен и начинает использовать с целью очистки газов, содержащих высокие концентрации NO2(отходящие газы химической и других отраслей промышленности).

Процесс доокисления NO в NO2в пламенах молекулярным кислородом имеет высокую энергию активации реакций и большое время реагирования, поэтому существенных количеств NO2он дать не может. Из двух наиболее вероятных окислителей NO в NO2(атомарный кислород и пероксидный радикал - HO2) практически значение имеет лишь НО2. Доокисление NO в NO2 происходит за счёт реакции с пероксидным радикалом и имеет место при сильном охлаждении пламен избыточным воздухом и водоохлаждаемыми поверхностями нагрева :

«Время жизни» НО2 составляет от 10^-4 с до (2-3)*10^-2 с. Процесс окисления лимитируется только количеством НO2 , так как концентрация NO существенно выше, чем радикальность НO2 .

В области минимальных температур в зоне горения при содержании NO в продуктах сгорания 100-120 мг/м^3 время реагирования не превышает 10^-4 с , т.е можно считать, что при наличии НO2 NO практически мгновенно переходит в NO2 и только недостаточное количество НO2 препятствует полному доокислению NO в NO2 . Всё количество пероксидного радикала, вынесенного из зоны горения в результате диффузионного процесса в предпламенную и послепламенную области, прореагирует с образованием NO2 .

Критическая температура, ниже которой происходит образование NО2 в пламенах, равна 977 К. Резкое охлаждение продуктов сгорания имеет место в частности, в малых отопительных котлах . Время, необходимое для достижения частицей, находящейся во фронте пламени, наиболее удаленной экранной поверхности, невелико и составляет 0,10-0,12 с, что создает благоприятные условия для образования пероксидных радикалов и способствует образованию значительных количеств диоксида азота в продуктах сгорания топлива в отопительных котлах.

С уменьшением мощности котла содержание NO2 в продуктах сгорания возрастает, что объясняется рядом факторов, но прежде всего :

а) большим коэффициентом избытка воздуха ;

б) более интенсивным охлаждением зоны горения.