Смекни!
smekni.com

Конспект лекций по Экологии (стр. 4 из 30)

Принцип эмерджентности.

Важное следствие иерархической организации состоит в том, что по мере объединения компонентов, или подмножеств, в более «крупные функциональные единицы, у этих новых единиц возникают новые свойства, отсутствовавшие на предыдущем уровне. Такие качественно новые, эмерджентные, свойства экологического уровня или экологической единицы нельзя предсказать, исходя из свойств компонентов, составляющих этот уровень или единицу. Иными словами, свойства целого невозможно свести к сумме свойств его частей. Хотя данные, полученные при изучении какого-либо уровня, помогают при изучении следующего, с их помощью никогда нельзя полностью объяснить явления, происходящие на этом следующем уровне; он должен быть изучен непосредственно.

Для иллюстрации принципа эмерджентности приведем два примера, один из химии, другой из экологии. Водород и кислород, соединяясь в определенном соотношении, образуют воду, жидкость, совершенно непохожую по своим свойствам на исходные газы. А определенные водоросли и кишечнополостные животные, эволюционируя совместно, образуют систему кораллового рифа, возникает эффективный механизм круговорота элементов питания, позволяющий такой комбинированной системе поддерживать высокую продуктивность в водах с очень низким содержанием этих элементов. Следовательно, фантастическая продуктивность и разнообразие коралловых рифов - эмерджентные свойства, характерные только для уровня рифового сообщества.

При каждом объединении подмножеств в новое множество возникает по меньшей мере одно новое свойство; предлагается различать эмерджентные свойства, определение которых дано выше, и совокупные свойства, представляющие собой сумму свойств компонентов. И те и другие - свойства целого, но совокупные свойства не включают новых или уникальных особенностей, возникающих при функционировании системы как целого. Рождаемость - пример совокупного свойства, поскольку она представляет собой лишь сумму индивидуальных рождений за определенный период, выраженную в виде доли или процента общего числа особей в популяции. Эмерджентные свойства возникают в результате взаимодействия компонентов, а не в результате изменения природы этих компонентов. Части не «сплавляются», а интегрируются, обусловливая появление уникальных новых свойств.

Некоторые признаки, естественно, становятся более сложными и изменчивыми, когда по иерархии уровней организации (рис. 1.) продвигаешься слева направо, другие же, напротив, часто становятся менее сложными и менее изменчивыми. Поскольку на всех уровнях функционируют гомеостатические механизмы, а именно корректирующие и уравновешивающие процессы, действующие и противодействующие силы, амплитуда колебаний имеет тенденцию уменьшаться, когда мы переходим к рассмотрению более мелких единиц, функционирующих внутри крупных. Статистически разброс значений целого меньше суммы разброса частей. Например, интенсивность фотосинтеза лесного сообщества менее изменчива, чем интенсивность фотосинтеза у отдельных листьев или деревьев внутри сообщества; объясняется это тем, что если в одной части интенсивность фотосинтеза снижается, то в другой возможно его компенсаторное усиление. Если учесть эмерджентные свойства и усиление гомеостаза на каждом уровне, то станет ясно, что для изучения целого не обязательно знать все его компоненты. Это важный момент, поскольку некоторые исследователи считают, что не имеет смысла пытаться изучать сложные популяции и сообщества, не изучив досконально составляющие его более мелкие единицы. Напротив, изучение можно начать с любой точки спектра при условии, что учитывается не только изучаемый, но и соседние уровни, поскольку, как уже было сказано, некоторые свойства целого можно предсказать, исходя из свойств его частей (совокупные свойства), другие же нельзя (эмерджентные свойства). Идеальное изучение какого-либо уровня системы включает изучение трехчленной иерархии: системы, подсистемы (соседний низший уровень) и надсистемы (следующий верхний уровень).

В соответствии со сказанным мы будем обсуждать принципы экологии на уровне экосистемы, уделяя достаточно внимания таким под системам , как популяция и сообщество, и такой надсистеме, как биосфера.

Лекция 2.

Экологическая система. Принципы и концепции.

1. Концепция экосистемы.

2. Изучение экосистем.

3. Стабильность экосистем.

Если мы хотим, чтобы наше общество перешло к целостному решению проблем, возникающих на уровне биомов и биосферы, то должны прежде всего изучать экосистемный уровень организации.

Концепция экосистемы

Живые организмы и их неживое (абиотическое) окружение неразделимо связаны друг с другом и находятся в постоянном взаимодействии. Любая биосистема, включающая все совместно функционирующие организмы (биотическое сообщество) на данном участке и взаимодействующая с физической средой таким образом, что поток энергии создает четко определенные биотические структуры и круговорот веществ между живой в неживой частями, представляет собой экологическую систему или экосистему.

Долговременное функционирование экосистемы обеспечивают три основных компонента - сообщество, поток энергии и круговорот веществ.

Поток энергии направлен в одну сторону; часть поступающей солнечной энергии преобразуется сообществом и переходит на качественно более высокую ступень, трансформируясь в органическое вещество, представляющее собой более концентрированную форму энергии, чем солнечный свет, но большая часть энергии деградирует, проходит через систему и покидает ее в виде низкокачественной тепловой энергии (тепловой сток). Энергия может накапливаться, затем снова высвобождаться или экспортироваться но ее нельзя использовать вторично.

В отличие от энергии элементы питания, в том числе биогенные элементы, необходимые для жизни (углерод, азот, фосфор и т. д.), и вода не только могут, но и должны использоваться многократно.

Все экосистемы, даже самая крупная - биосфера, являются открытыми системами: они должны получать и отдавать энергию. Разумеется, экосистемы, входящие в биосферу, также в разной степени открыты для потоков веществ, для иммиграции и эмиграции организмов. Поэтому концепция экосистемы должна учитывать существование связанных между собой и необходимых для функционирования и самоподдержания экосистемы среды на входеи среды на выходе: в концептуально законченную экосистему входит среда на входе, среда на выходе и система , т.е.

Экосистема = IE + S + OE.

Данная схема решает проблему, связанную с проведением границ рассматриваемой единицы, поскольку в этом случае не имеет значения, как мы вычленяем исследуемую часть экосистемы. Часто удобными оказываются естественные границы, например берег озера или опушка леса, или административные, например границы города, но эти границы могут быть и условными, если их точно определить геометрически. Конечно, экосистема не ограничена «ящиком» в центре схемы, поскольку если бы этот «ящик» был герметичным, то его живое содержимое (озеро или город) не вынесло бы такого заключения. Функционирующая реальная экосистема должна иметь вход и в большинстве случаев пути оттока переработанной энергии и веществ.

Изучение экосистем

При изучении больших сложных экосистем, таких, как озера и леса, экологи используют четыре основных подхода:

1) холистический(от греч. holos - целый) , который предполагает измерение поступлений и выхода энергии и различных веществ, оценку совокупных и эмерджентных свойств, а затем в случае необходимости - изучение его составных частей; экосистема рассматривается как черный ящик,т. е. как объект, функция которого может быть описана без выяснения его внутреннего содержания.

2) мерологический(от греч. meros - часть), при котором сначала изучаются свойства основных частей, а затем эти сведения экстраполируются на систему в целом. Очевидно, что важные эмерджентные свойства при мерологическом подходе могут быть упущены. Но, что самое главное, конкретный организм в разных системах может вести себя совершенно по-разному, и эта изменчивость, очевидно, связана с тем, как данный организм взаимодействует с другими компонентами экосистемы. Например, многие насекомые в агроэкосистеме являются опасными вредителями, а в своих естественных местообитаниях они не опасны, так как там их держат под контролем паразиты, конкуренты, хищники пли химические ингибиторы.

3) экспериментальные методы, т.е. нарушение тем или иным способом структуры или функции экосистемы в надежде, что реакция системы на такое нарушение позволит проверить гипотезы, основанные на наблюдениях. Экспериментальные методы - основа «стрессовой», или «пертурбационной» экологии.

4) методы моделирования. Модель-это абстрактное описание того или иного явления реального мира, позволяющее делать предсказания относительно этого явления. В своей простейшей форме модель может быть словесной или графической (неформализованной). Однако если мы хотим получить достаточно надежные количественные прогнозы, то модель должна быть статистической и строго математической (формализованной).