Хотя в пересчете на площадь листвы эффективность фотосинтеза у С3-растений ниже, эти растения создают большую часть фотосинтетической продукции мира, возможно потому, что они более конкурентноспособны в смешанных сообществах, где растения затеняют друг друга и где освещенность, температура и другие показателиближе к средним значениям, чем к предельным. Это еще один хороший пример принципа эмерджентности. Выживание наиболее приспособленных в реальном мире - не всегда выживание видов, физиологически более эффективных в оптимальных условиях в монокультуре; чаще выживают виды, преуспевающие в смешанной культуре в изменчивых и не всегда оптимальных условиях. Иными словами, то, что эффективно в изоляции, не обязательно эффективно в сообществе, где на естественный отбор сильно влияют межвидовые взаимодействия.
Как и следовало ожидать, С4- виды преобладают среди растительности пустынь и степей в теплом и тропическом климате и редки в лесах и на севере, где освещенность и температура низкие.
Недавно был открыт еще один способ фотосинтеза, приспособленный к условиям пустынь и получивший название САМ - метаболизм (кислотный метаболизм толстенковых). У некоторых жителей пустыни, в том числе кактусов, устьица на протяжении жаркого дня закрыты и открываются только прохладной ночью. Диоксид углерода, поглощаемый через устьица, накапливается в форме органических кислот и фиксируется в углеводах только на следующий день. Такая задержка фотосинтеза значительно уменьшает дневные потери воды, усиливая этим способность растений сохранять водный баланс и запасы воды.
Микроорганизмы, которых называют хемосинтезирующими бактериями, относят к хемолитотрофам, потому что они получают энергию для включения диоксида углерода в состав компонентов клетки не за счет фотосинтеза, а в результате химического окисления простых неорганических соединений, например аммиака (в нитрит), нитрита (в нитрат), сульфида (в серу), двухвалентного железа (в трехвалентное). Такие микроорганизмы могут расти в темноте, но большинству из них нужен кислород. В качестве примера можно привести различные азотные бактерии, играющие важную роль в круговороте азота. Благодаря способности функционирования в отсутствие света - в осадках, почве и на дне океанов- хемосинтезирующие бактерии не только играют роль в извлечении минеральных питательных веществ, они используют энергию, которая иначе была бы недоступна консументам.
Большинство высших (семенных) растений и многие виды водорослей используют только простые неорганические вещества и, следовательно, являются полностью автотрофными. Но некоторые водоросли нуждаются в каком-то одном (определенном) сложном органическом "ростовом веществе", которое они сами не способны синтезировать. Другие виды нуждаются в двух, трех или многих таких "ростовых веществах" и, следовательно, являются частично гетеротрофными; организмы, занимающие промежуточное положение между автотрофами и гетеротрофами, называются ауксотрофными.
В глобальном масштабе эволюционно наиболее развитые формы жизни можно четко разделить на автотрофов и гетеротрофов, причем для выживания последних необходим газообразный кислород. Но многие виды и штаммы низших микроорганизмов - бактерий, грибов, низших водорослей и простейших - не столь специализированы, они приспособлены к промежуточному способу существования и могут с автотрофии переключаться на гетеротрофию, жить в присутствии и в отсутствии кислорода.
Типы катаболизма и организмов-разрушителей.
Катаболизм (разложение) органических остатков - длительный и сложный процесс, контролирующий несколько важных функций экосистемы. В результате этого процесса:
1) возвращаются в круговорот элементы питания, находящиеся в мертвом органическом веществе;
2) производится пища для последовательного ряда организмов в детритной пищевой цепи;
3) производятся вторичные метаболиты ингибирующего, стимулирующего и часто регулирующего действия;
4) образуются хелатные комплексы с элементами питания;
5) преобразуются инертные вещества земной поверхности, что приводит к образованию такого уникального природного тела, каким является почва;
6) поддерживается состав атмосферы, способствующий жизни крупных аэробов, таких, как человек.
Если рассматривать разложение в широком смысле слова, как "любое биологическое окисление, дающее энергию", то с учетом потребности в кислороде можно выделить несколько типов этого процесса, приблизительно аналогичных типам фотосинтеза:
1. Аэробное дыхание - окислителем (акцептором электронов) служит газообразный молекулярный кислород (тип 1 );
2. Анаэробное дыхание протекает без участия газообразного кислорода. Акцептором электронов служит не кислород, а какое-либо другое неорганическое (тип 2) или органическое (тип 3) соединение;
3. Брожение тоже анаэробный процесс, но окисляемое органическое соединение само служит акцептором электронов (тип 4).
Аэробное дыхание (тип 1) - процесс обратный "нормальному фотосинтезу"; в этом процессе синтезированное органическое вещество {СН2O} вновь разлагается с образованием СО2 и H2О и с высвобождением энергии. Все высшие растения и животные и большинство микроорганизмов получают энергию для поддержания жизнедеятельности и построения клеток именно с помощью этого процесса. В итоге завершенного дыхания образуются СО2, вода и вещества клетки; однако процесс может идти не до конца, и в результате такого незавершенного дыхания образуются органические соединения, еще содержащие некоторое количество энергии, которая в дальнейшем может быть использована другими организмами (процессы 2 и 3).
Бескислородное дыхание служит основой жизнедеятельности главным образом у сапрофагов (бактерии, дрожжи, плесневые грибы, простейшие), хотя, как звено метаболизма, оно может встречаться и в некоторых тканях высших животных. Хороший пример облигатных анаэробов - метановые бактерии, которые разлагают органические соединения, образуя метанпутем восстановления, либо органического углерода, либо углерода карбонатов. Таким образом, дыхание у них может происходить по типам 2 и 3.
К общеизвестным организмам, использующим брожение (тип 4), относятся дрожжи; они имеют большую практическую ценность для человека, но, кроме того, в изобилии встречаются в почве, где играют ключевую роль в разложении растительных остатков.
Многие группы бактерий (например факультативные анаэробы) способны и к аэробному и к анаэробному дыханию. Однако конечные продукты этих двух процессов различны, и количество высвобождающейся энергии при анаэробном дыхании значительно меньше.
Общий баланс процессов продукции и разложения
Каждый год фотосинтезирующими организмами на Земле создается около 100 млрд. т. органического вещества. За этот промежуток времени приблизительно такое же количество живого вещества окисляется, превращаясь в СО2 и воду в результате дыхания организмов. Однако этот баланс неточен. Для биосферы в целом важнейшее значение имеет отставание процесса полной гетеротрофной утилизации и разложенияпродуктов автотрофного метаболизма от процесса их создания, поскольку именно отставание обусловило накопление в недрах горючих ископаемых, а в атмосфере - кислорода. В этой связи крайнюю озабоченность вызывает деятельность человека, который хотя и ненамеренно, но очень значительно ускоряет процессы разложения.
Лекция 11.