Глобальный круговорот углерода.
В биологическом круговороте углерода участвуют только органические соединения и диоксид углерода; фотосинтез и дыхание полностью комплементарны. Весь ассимилированный в процессе фотосинтеза углерод включается в углеводы, а в процессе дыхания углерод, содержащийся в органических соединениях, превращается в диоксид углерода.
Обширные фонды углерода неорганического происхождения - атмосферный диоксид углерода, растворенный диоксид углерода (главным образом в форме HCO3-), угольная кислота и карбонатные отложения - участвуют в круговороте углерода в различной степени . Обмен между углеродом, содержащимся в изверженных породах, отложениях карбоната кальция, каменном угле и нефти, и другими более активными его фондами происходит настолько медленно, что влияние этого углерода на краткосрочное функционирование экосистем незначительно.
В круговороте СО2 атмосферный фонд очень невелик, в сравнении с запасами углерода в океанах, в ископаемом топливе и других резервуарах земной коры. Полагают, что до наступления индустриальной эры потоки углерода между атмосферой, материками и океанами были сбалансированы.
В основе этого баланса лежит регулирующая деятельность зеленых растений и поглощающая способность карбонатной системы моря. Когда более 2 млрд. лет назад на Земле появилась жизнь, атмосфера состояла из вулканических газов. В ней было много СО2 и мало кислорода (а быть может, его не было совсем), и первые организмы были анаэробными. В результате того, что продукция в среднем слегка превосходила дыхание, за геологическое время в атмосфере накопился кислород и уменьшилось содержание СО2. Накоплению кислорода способствовали также геологические и чисто химические процессы, например высвобождение его из оксидов железа или образование восстановленных соединений азота и расщепление воды ультрафиолетовым излучением с выделением кислорода. Низкое содержание СО2 , также как высокие концентрации О2 служат лимитирующими факторами для фотосинтеза: для большинства растений характерно увеличение интенсивности фотосинтеза, если в эксперименте увеличивается содержание CО2 или понижается содержание О2. Таким образом, зеленые растения оказываются весьма чувствительным регулятором содержания этих газов.
Фотосинтезирующий "зеленый пояс" Земли и карбонатная система моря поддерживают постоянный уровень содержания СО2в атмосфере. Но в последнем столетии стремительно возрастающее потребление горючих ископаемых вместе с уменьшением поглотительной способности "зеленого пояса" начинает превосходить возможности природного контроля, так что содержание СО2 в атмосфере, сейчас постепенно возрастает. Действительно, наибольшим изменениям подвержены потоки веществ на входе и на выходе небольших обменных фондов. Полагают, что в начале промышленной революции (примерно 1800 г.) в атмосфере Земли содержалось около 290 частей СО2на миллион (0,029 %). В 1958 г., когда были впервые проведены точные измерения, содержание составило 315, а в 1960 г. оно выросло до 335 частей на миллион. Если концентрация вдвое превысит доиндустриальный уровень, что может случишься к середине будущего века, вероятно потепление климата Земли: температура в среднем повысится на 1,5 - 4,5°С, и это наряду с подъемом уровня моря (в результате таяния полярных шапок) и изменением распределения осадков может погубить сельское хозяйство.
Считают, что в следующем веке может установиться новое, но ненадежное равновесие между увеличением содержания СО2(способствующего разогреву Земли) и усилением загрязнения атмосферы пылью и другими частицами, отражающими излучение и этим охлаждающими планету. Любое значительное результирующее изменение теплового бюджета Земли тогда повлияет на климат.
Основным источником поступления "парникового газа" СО2считается сжигание горючих ископаемых, однако свой вклад вносят также развитие сельского хозяйства и сведение лесов. Может показаться удивительным, что сельское хозяйство в конечном счете приводит к потере СО2из почвы (то есть вносит в атмосферу больше, чем забирает оттуда), но дело в том, что фиксация СО2сельскохозяйственными культурами, многие из которых активны лишь часть года, не компенсирует количества СО2, высвобождающееся из почвы, особенно в результате частой вспашки. Леса - важные накопители углерода, так как в биомассе лесов содержится в 1,5 раза, а в лесном гумусе - в 4 раза больше углерода, чем в атмосфере. Сведение леса, разумеется, может высвободить углерод, накопленный в древесине, особенно если она немедленно сжигается. Уничтожение леса, особенно при последующем использовании этих земель для сельского хозяйства или строительства городов, приводит к окислению гумуса.
Кроме СО2 в атмосфере присутствуют в небольших количествах еще два соединения углерода: оксид углерода (СО)- примерно 0,1 части на миллион и метан (СH4) - около 1,6 части на миллион. Как и СО2 , эти соединения находятся в быстром круговороте и поэтому имеют небольшое время пребывания в атмосфере - около 0,1 года для СО; 3,6 года для СH4и 4 года для СО2.
И СО, и СH4образуются при неполном или анаэробном разложении органического вещества; в атмосфере оба окисляются до СО2. Столько же СО , сколько попадает в атмосферу в результате естественного разложения, вносится в нее сейчас при неполном сгорании горючих ископаемых, особенно с выхлопными газами. Накопление монооксида углерода - этого смертельного яда для человека - в глобальном масштабе не представляет собой угрозы, но в городах, где воздух застаивается, повышение концентрации этого газа в атмосфере начинает становиться угрожающим, достигая 100 частей на миллион.
Производство метана - одна из важнейших функций водно-болотистых угодий и мелководных морей мира. Метан, как полагают, имеет полезную функцию: он поддерживает стабильность озонного слоя в верхней атмосфере, который блокирует смертельно опасное ультрафиолетовое излучение Солнца.
Лекция 10.
Круговороты основных биогенных элементов.
1. Круговорот кислорода.
2. Типы фотосинтеза и организмов-продуцентов.
3. Типы катаболизма и организмов-разрушителей.
4. Общий баланс процессов продукции и разложения.
Круговорот кислорода .
Вторым по содержанию в атмосфере после азота является кислород, составляющий 20,95% ее по объему. Гораздо большее его количество находится в связанном состоянии в молекулах воды, в солях, а также в оксидах и других твердых породах земной коры, однако к этому огромному фонду кислорода экосистема не имеет непосредственного доступа. Время переноса кислорода в атмосфере составляет около 2500 лет, если пренебречь обменом кислорода между атмосферой и поверхностными водами.
Механизм круговорота кислорода достаточно прост. Полагают, что молекула кислорода (О2) , образующаяся при фотосинтезе, получает один свой атом от диоксида углерода, а другой - от воды; молекула кислорода, потребляемая при дыхании, отдает один свой атом диоксиду углерода, а другой - воде. Таким образом, круговорот кислорода завязан на процессы фотосинтеза и дыхания, с которыми интересно будет познакомиться.
Типы фотосинтеза и организмов-продуцентов.
С химической точки зрения процесс фотосинтеза включает запасание части энергии солнечного света в виде потенциальной энергии пищи. Общее уравнение окислительно-восстановительной реакции можно записать следующим образом:
СО2 +2 H2A « {СН2O} + H2О +2A
окисление описывается уравнением:
H2A - 2e-® 2H+ +A;
а восстановление :
СО2 +4H+ + 4e-® {СН2O}+ H2О.
Для зеленых растений (водорослей, высших растений) А - это кислород; вода окисляется с высвобождением газообразного кислорода, а диоксид углерода восстанавливается до углеводов ({СН2O}) с высвобождением воды. Такой тип фотосинтеза носит название "нормального фотосинтеза".
При бактериальном фотосинтезе, напротив, H2A - восстановитель - не вода, а либо неорганическое соединение серы, например сероводород H2S, как у зеленых и пурпурных серобактерий, либо органическое соединение, как у пурпурных и бурых несерных бактерий. Соответственно при бактериальном фотосинтезе этих типов кислород не выделяется.
Фотосинтезирующие бактерии в основном водные морские и пресноводные организмы; в большинстве случаев они играют незначительную роль в продукции органического вещества. Но они способны функционировать в условиях, в общем неблагоприятных для большинства зеленых растений, и в водных отложениях участвуют в круговороте некоторых элементов. Бактериальный фотосинтез может быть полезен в загрязненных и эвтрофных (кормных) водах, восстановленных зонах с ограниченным доступом света, в стоячих озерах, богатых сероводородом, где на его долю может приходиться до 30% общей продукции.
Установлено, что у высших растений существуют разные биохимические механизмы восстановления диоксида углерода до углеводов, сопровождающегося выделением кислорода. У большинства растений фиксация диоксида углерода идет по С3- пентозофосфатному пути, или циклу Кальвина. Иной путь - по циклу С4- дикарбоновых кислот. При обсуждении экологических последствий этих особенностей растения в соответствии с характером протекающих у них процессов фотосинтеза называют С3-растениями или С4-растениями. Эти растения по-разному реагируют на свет, температуру и воду. У первых максимальная интенсивность фотосинтеза (на единицу поверхности листа) обычно наблюдается при умеренных освещенности и температуре, а высокие температуры и яркий солнечный свет подавляют фотосинтез. Напротив, С4-растения адаптированы к яркому свету и высокой температуре и в таких условиях значительно превосходят по продуктивности С3-растения. Кроме того, они более эффективно используют воду: как правило, на производство 1 г сухого вещества им требуется менее 400 г воды, а С3- -растениям - от 400 до 1000 г воды. К тому же фотосинтез у С4-растений не ингибируется высокими концентрациями кислорода, как это происходит у С3-видов. Одна из причин того, что С4-растения более эффективны у верхних пределов световой и температурной шкал, состоит в том, что у них невелико фотодыхание, т.е. при увеличении освещенности продукты фотосинтеза не тратятся на дыхание.